中国农业科学 ›› 2021, Vol. 54 ›› Issue (9): 1926-1936.doi: 10.3864/j.issn.0578-1752.2021.09.010

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

辽宁省水稻主产区化肥减施潜力分析

宫亮(),金丹丹,牛世伟,王娜,徐嘉翼,隋世江   

  1. 辽宁省农业科学院植物营养与环境资源研究所,沈阳 110161
  • 收稿日期:2020-07-04 接受日期:2020-11-30 出版日期:2021-05-01 发布日期:2021-05-10
  • 作者简介:宫亮,Tel:13889123476;E-mail:gongliang1900@sina.com
  • 基金资助:
    国家重点研发计划(2018YFD0200200)

Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province

GONG Liang(),JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang   

  1. Institute of Plant Nutrition and Environmental Resource, Liaoning Academy of Agricultural Sciences, Shenyang 110161
  • Received:2020-07-04 Accepted:2020-11-30 Online:2021-05-01 Published:2021-05-10

摘要:

【目的】辽宁省水稻种植面积约50万hm2,较10年前下降了近1/5,但由于单产持续增加,年产量始终稳定在400万t以上。作为单产最高的粳稻主产区之一,在化肥零增长的背景条件下,兼顾土壤肥力和水稻产量的化肥减施潜力有待研究。【方法】2020年对辽河三角洲、东南部沿黄海和辽宁中北部3个水稻主产区进行农户施肥调研,每个稻作区分别选择高、中、低产代表乡镇为调研点,每个调研点选择2—5个村,每个村选择10户进行调研,共计590份调查问卷。各稻作区氮肥推荐用量基于前期研究基础确定。依据作物养分需求量和稻田土壤养分状况,采用磷钾衡量监控方法,估算稻田磷、钾肥适宜施用量。基于此分析辽宁省水稻化肥减肥潜力。【结果】辽河三角洲、东南部沿黄海和辽宁中北部稻区农户平均产量分别为10.4、7.7和8.7 t·hm-2,差异较大,同一稻作区高低相差约4 t·hm-2,不同稻作区间高低相差约2.7 t·hm-2。辽宁省稻田N、P2O5和K2O平均习惯用量分别为229.4、102.8 和91.1 kg·hm-2,氮肥用量较2004—2017年降低了12%—32%,磷钾肥用量有所增加,氮磷钾肥比例约为2.2﹕1﹕1;3个稻作区农户习惯氮肥和磷肥施用量变异较大,纯氮和P2O5平均用量高低相差分别为79.5 kg·hm-2和35.4 kg·hm-2;农户纯氮施用量高低相差约4倍,有2.5%农户不施钾肥,个别农户不施磷肥,P2O5和K2O最高用量分别为294.5和225.0 kg·hm-2,盲目施肥现象依然存在。以各稻作区近3年平均产量增产5%为目标产量计算推荐施肥量,辽河三角洲稻作区目标产量为10 000 kg·hm-2,N、P2O5 和K2O的推荐用量分别为234、111和101 kg·hm-2,有82.1% 的农户氮肥效率较低,过量施氮问题突出,其中有21.7% 的农户具有较大减氮潜力,可节约氮肥13.7%;9.6%的农户具有较大磷肥减施潜力,可节约磷肥5.1%;钾肥需要适量补充。东南部沿黄海稻作区目标产量为7 500 kg·hm-2,N、P2O5 和K2O的推荐用量分别为179、83和76 kg·hm-2,68.0% 的农户磷肥效率较低,过量施磷现象普遍,其中有28.0% 的农户具有较大节磷潜力,可降低18.6%的投入量;约20% 的农户处于氮、钾肥低产低效水平,能减施7%左右。辽宁中北部稻作区目标产量为9 000 kg·hm-2,N、P2O5 和K2O的推荐用量分别为210、80和91 kg·hm-2;约有30%的农户氮、磷、钾肥具有较大减施潜力,其中氮、磷肥可减施约1%,钾肥减施约4%。【结论】辽河三角洲稻作区氮肥过量施用问题突出,有21.7%的农户可减施氮肥13.7%;东南部沿黄海稻作区磷肥过量施用现象普遍,有28.0%的农户可降低18.6%的投入量;辽宁中北部稻作区约有30%的农户具有化肥减施潜力,氮、磷肥减施约1%,钾肥减施约4%。

关键词: 水稻, 化肥减施, 化肥阈值, 肥料偏生产力, 辽宁省

Abstract:

【Objective】The rice planting area in Liaoning Province is approximately 500 000 hm2, decreasing by one fifth from the size it was 10 years ago. However, due to the continuous increase in unit production, the annual output has been stable at over 4 million tons. As the main producing area with the highest unit yield for japonica rice in Liaoning Province, the potential and space remains to be further studied in the context of zero growth of chemical fertilizer, at the same time, both soil fertility and rice yield should be taken into consideration for chemical fertilizer application reduction. 【Method】Three major rice producing areas were investigated in 2020, including the Liaohe Delta, the Southeastern Area along the Yellow Sea, and the North-central Area of Liaoning. In each rice planting area, the representative towns with high, medium and low yields were selected as research spots. In each research spot, two to five villages (ten households per village) were selected to carry out the investigation, counting up to 590 questionnaires. The recommended amount of nitrogen (N) fertilizer for each rice growing area was determined on the basis of previous studies. According to crop nutrient requirement and soil nutrient status in paddy fields, the suitable amount of phosphate (P) and potassium (K) fertilizer was estimated by the measurement and monitoring method of P and K. Based on this analysis, the potential of chemical fertilizer reduction for paddy rice in Liaoning Province was calculated. 【Result】Average yields in the Liao River Delta, the southeastern area along the Yellow Sea and the north-central area of Liaoning were 10.4, 7.7 and 8.7 t·hm-2, respectively. The difference within the same rice planting area was about 4 t·hm-2, while the difference between different rice planting areas was about 2.7 t·hm-2. The average amount of N, P2O5 and K2O for the different paddy rice fields in Liaoning Province were 229.4, 102.8 and 91.1 kg·hm-2, respectively. Compared with the amount of fertilizer application before 2004-2017 year, the N fertilizer was reduced by 12%-32% and the P and K fertilizer was increased to some extent. The ratio of N, P and K fertilizer was 2.2﹕1﹕1. The average amounts of N and P fertilizer application varied greatly. The difference of the average amount between the maximum and the minimum is 79.5 kg·hm-2for nitrogen and 35.4 kg·hm-2for P2O5. The difference between the amounts of pure N application by farmers was about 4-fold. About 2.5% of the farmers did not apply K fertilizer, and some farmers did not apply P fertilizer. The maximum application of P2O5 and K2O were 294.5 and 225.0 kg·hm-2, respectively. The phenomenon of unscientific fertilization still existed in these regions. Taking the average yield increase of 5% in the last three years as the target yield, the recommended fertilizer amount was calculated. The target yield in the rice planting area of the Liaohe Delta was 10 000 kg·hm-2. The recommended application of N, P2O5 and K2O were 234, 111 and 101 kg·hm-2, respectively. About 82.1% of the farmers had low N fertilizer efficiency. This excessive N fertilizer application was a serious problem. About 21.7% of the farmers could potentially reduce N fertilization by 13.7%, about 9.6% of farmers could potentially reduce P fertilizer by 5.1%, and K fertilizer needed to be supplemented appropriately. Target yield in the Southeastern Area along the Yellow Sea was 7 500 kg·hm-2. The recommended application of N, P2O5 and K2O were 179, 83 and 76 kg·hm-2, respectively. About 68.0% of the farmers had low P fertilizer efficiency with a generally excessive P fertilizer application phenomenon. 28.0% of the farmers could potentially reduce the amount of P fertilizer by 18.6%. About 20% of farmers fell in the low-yield and low-efficiency levels of N and K fertilizer. The application reduction potential was around 7%. The target yield in the North-central Area of Liaoning was 9 000 kg·hm-2. The recommended application of N, P2O5 and K2O were 210, 80 and 91 kg·hm-2, respectively. About 30% of farmers had the potential to reduce the application of N, P and K fertilizers. The application reduction potential for N, P and K fertilizer was approximately 1%, 1% and 4%, respectively. 【Conclusion】After the implementation of a five year ‘zero growth in fertilizer use’ policy, the situation of fertilizer application in the paddy fields of Liaoning Province has be drastically improved, but the phenomenon of unscientific fertilization by farmers still exists. In the Liaohe Delta, the excessive application of N fertilizer was prominent. About 21.7% of the farmers could reduce the application of N fertilizer by 13.7%. In the Southeastern Area along the Yellow Sea, the phenomenon of excessive application of P fertilizer is common. About 28.0% of the farmers could reduce P fertilizer input by 18.6%. In the north-central area of Liaoning Province, about 30% of farmers in rice planting areas have the potential to reduce the application of chemical fertilizers. The percentage for potential application reduction of N and P fertilizer was about 1%, while that of K fertilizer was about 4%.

Key words: rice, application reduction of chemical fertilizer, threshold of chemical fertilizer, partial factor productivity, Liaoning Province