中国农业科学 ›› 2021, Vol. 54 ›› Issue (3): 522-532.doi: 10.3864/j.issn.0578-1752.2021.03.006

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响

李浩1(),韦本辉2(),黄金玲1,李志刚1,王令强1,梁晓莹1,李素丽1()   

  1. 1广西大学农学院,南宁530004
    2广西农业科学院经济作物研究所,南宁530007
  • 收稿日期:2020-04-27 接受日期:2020-09-03 出版日期:2021-02-01 发布日期:2021-02-01
  • 通讯作者: 李素丽
  • 作者简介:李浩,Email: dlihao@126.com。|韦本辉,E-mail: weibenhui@126.com
  • 基金资助:
    广西创新驱动重大专项(AA17204037-4);国家自然科学基金(31871689);国家自然科学基金(31460373)

Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane

LI Hao1(),WEI BenHui2(),HUANG JinLing1,LI ZhiGang1,WANG LingQiang1,LIANG XiaoYing1,LI SuLi1()   

  1. 1College of Agriculture, Guangxi University, Nanning 530004
    2Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2020-04-27 Accepted:2020-09-03 Online:2021-02-01 Published:2021-02-01
  • Contact: SuLi LI

摘要:

【目的】探讨甘蔗粉垄技术增产增糖的根系细胞生理学机制,为粉垄技术推广提供理论依据。【方法】以桂糖42号为供试材料进行粉垄耕作处理(耕作深度40 cm),以常规耕作为对照(耕作深度 25 cm,CK),分别测定土壤速效养分,甘蔗农艺性状及产量和糖分、根系形态、根毛区组织细胞结构、根系活力、苹果酸脱氢酶、细胞色素氧化酶等呼吸代谢相关酶活性。【结果】(1)与常规耕作相比,新植蔗土壤的碱解氮和速效磷分别增加了8.7%和17.9%;宿根蔗土壤增加了10.4%和25.6%,且不同耕作方式间同一指标差异显著;(2)粉垄新植蔗出苗率和分蘖率比常规耕作分别提高了25.0%和17.4%,宿根蔗分别提高了30.6%和11.7%。砍收时,粉垄新植蔗株高、茎径、单茎重、有效茎、产量分别提高了13.2%、17.6%、29.0%、5.3%、12.9%,粉垄宿根蔗分别增加了7.6%、22.2%、70.3%、18.7%和12.9%,且不同耕作方式间同一指标差异显著;(3)粉垄甘蔗根长、根直径、根体积、根尖数、根表面、根鲜重、根干重比常规耕作分别增加20.9%—42.3%、12.3%—71.0%、33.3%—71.0%、6.4%—61.6%,21.8%—64.1%、26.8%—64.4%和32.6%—95.3%,且不同耕作方式间同一指标差异显著;(4)与常规耕作相比,粉垄甘蔗根毛区和根毛细胞更长,根毛排列更疏松有序,根尖细胞壁增厚,细胞质、粗糙型内质网和高尔基体更丰富,线粒体数目更多且嵴清晰,细胞核结构更紧致;粉垄新植蔗根毛长度、根毛密度、单位面积根毛总长度和细胞中线粒体数目分别增加了53.3%、73.0%、111.1%和37.5%;粉垄宿根蔗以上指标也分别增加了38.9%、95.9%、82.6%和53.8%,且不同耕作方式间同一指标差异显著;(5)与常规耕作相比,粉垄甘蔗根系活力在整个生育期均显著增强,在苗期、伸长期和成熟期分别增加了1.29倍、1.39倍和1.25;(6)与常规耕作相比,粉垄苹果酸脱氢酶(MDH)、细胞色素氧化酶(CytcA510)和多酚氧化酶(PPO)活性在苗期和伸长期均显著增加,在苗期,新植蔗粉垄甘蔗苹果酸脱氢酶、细胞色素氧化酶和多酚氧化酶活性分别提高了22.9%、28.1%和38.9%,宿根蔗以上各指标分别提高23.0%、20.3%、27.7%,差异显著;在伸长期,新植粉垄甘蔗分别显著提高21.2%、41.8%和33.7%,宿根蔗各指标分别提高27.4%、26.8%和53.3%;成熟期,除了细胞色素氧化酶差异不显著外,粉垄新植蔗和宿根蔗的苹果酸脱氢酶、多酚氧化酶活性均显著提高。【结论】粉垄可提高速效氮和速效磷含量,改善甘蔗根系的营养,提高根系活力和呼吸代谢相关酶活性,有利于根系组织细胞结构和根系形态的发育,从而进一步促进根系对水肥的吸收。

关键词: 粉垄, 甘蔗, 根系, 细胞结构, 生理

Abstract:

【Objective】By exploring the root cellular physiological mechanism on sugarcane yield and sugar content under the new farming method of Fenlong, this paper provided a theoretical basis for the promotion of Fenlong cultivation technology.【Method】Guitang 42 was used as the tested sugarcane variety, the conventional rotary tillage (CK, the depth of ploughing was 25 cm) and Fenlong cultivation (the depth of ploughing was 40 cm) were carried out to investigate the soil available nutrient, agronomic characters, yield and sugar content, root vitality, cellular ultrastructure and the enzyme of respiratory metabolic of sugarcane root.【Result】(1) The alkaline N and available P of new plant of Fenlong cultivation were 8.7% and 17.9% significantly higher than those under CK, respectively, and the alkaline N and available P of ratoon cane were 10.4% and 25.6% significantly higher than those under CK, respectively. (2) The emergence rate and tillering rate of Fenlong were increased by 25.0% and 17.4%, respectively, and regenerated sugarcane increased by 30.6% and 11.7%, respectively. Compared with conventional cultivation, the plant height, stem diameter, single stem weight, effective stem and yield of new planting sugarcane under Fenlonng cultivation increased by 13.2%, 17.6%, 29.0%, 5.3% and 12.9%, respectively, and regenerated sugarcane with Fenlonng cultivation increased by 7.6%, 22.2%, 70.3%, 18.7% and 12.9%, respectively. (3) The length, diameter, volume, root tip number, surface area, fresh weight and dry weight of root under Fenlong cultivation were 20.9%-42.3%, 12.3%-71.0%, 33.3%-71.0%, 6.4%-61.6%, 21.8%-64.1%, 26.8%-64.4% and 32.6%-95.3% significantly greater under CK, respectively. (4) Under Fenlong cultivation conditions, root hair area and cells were longer, the root hair arrangement was looser and more orderly, the root tip cell wall was thickened, the cytoplasm, rough endoplasmic reticulum and Golgi body were more abundant, the number of mitochondria was more and the crest was clear, and the nuclear structure was more compact than those under CK. The root hair length, root hair density, total root hair length per unit area and the number of mitochondria in cells were 53.3%, 73.0%, 111.1% and 37.5% higher than those under CK, respectively. The Fenlong tillage ratoon sugarcane above indicators also increased by 38.9%, 95.9%, 82.6% and 53.8%, respectively, and the same index was significantly different among different cultivation methods. (5) The root activity of sugarcane with Fenlong cultivation in seedling stage, elongation stage and maturity stage with Fenlong cultivation were 1.29 times, 1.39 times and 1.25 times significantly higher than CK, respectively. (6) The activity of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation increased significantly at seedling stage and elongation stage. In the seedling stage, the activities of MDH? PPO and CytcA510 in newly planted sugarcane were 22.9%, 28.1% and 38.9% significantly higher than those under CK, and the indexes of ratoon cane were 23.0%, 20.3% and 27.7% significantly higher than those under CK, respectively. At the elongation stage, the activities of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation were 21.2%, 41.8% and 33.7% significantly higher than those under CK, respectively; THE indexes of regenerated sugarcane were 27.4%, 26.8% and 53.3% higher than those of under CK, respectively; THE activities of MDH and PPO were significantly higher than those under CK.【Conclusion】 Fenlong cultivation of sugarcane could improve the soil available nutrient, improve the morphology and tissue cell structure of sugarcane roots, improve the activity of enzymes related to respiratory metabolism, thereby promoting the absorption of water and fertilizer by roots, facilitating growth and development on the ground, and increasing sugarcane yield and sugar content.

Key words: Fenlong, sugarcane, root, cell structure, physiology