中国农业科学 ›› 2020, Vol. 53 ›› Issue (23): 4750-4763.doi: 10.3864/j.issn.0578-1752.2020.23.003

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

外源ABA对两粒色小麦品种穗发芽及品质的影响

张雪,杨洪坤,郑亭,肖云,莫飘,樊高琼()   

  1. 四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室,成都 611130
  • 收稿日期:2020-02-24 接受日期:2020-06-23 出版日期:2020-12-01 发布日期:2020-12-09
  • 通讯作者: 樊高琼
  • 作者简介:张雪,E-mail: sdz626zx@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300406);四川省农作物育种攻关项目(2016NYZ005);国家公益性行业(农业)科研专项(20150312705)

Effects of Exogenous ABA on Pre-Harvest Sprouting Resistance and Quality of White and Red Wheat Cultivars

ZHANG Xue,YANG HongKun,ZHENG Ting,XIAO Yun,MO Piao,FAN GaoQiong()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130
  • Received:2020-02-24 Accepted:2020-06-23 Online:2020-12-01 Published:2020-12-09
  • Contact: GaoQiong FAN

摘要:

【目的】西南麦区收获季多阴雨导致籽粒易穗发芽是造成该区域小麦品质变劣和商品性差的重要影响因素。研究脱落酸(ABA)喷施时期和喷施浓度对小麦穗发芽抑制效果及其对小麦籽粒品质的影响,提出适宜该区域的ABA喷施组合技术模式,为生产上利用植物生长调节剂调控穗发芽和改善小麦品质提供理论依据与技术支撑。【方法】以易穗发芽白皮小麦品种中科麦138和抗穗发芽红皮小麦品种绵麦367为试验材料,在灌浆初期(15 DAA)、灌浆后期(30 DAA)以及生理成熟期(35DAA),喷施不同浓度ABA(0、50、100 mg·L -1),研究其对两粒色小麦品种穗发芽表型,灌浆期间α-淀粉酶活性、籽粒可溶性糖和淀粉含量动态,收获后籽粒蛋白质、湿面筋含量、沉淀值,淀粉组分及RVA特征值的影响。【结果】(1)花后喷施不同浓度ABA对小麦穗发芽均有抑制作用,2个年度均以花后30 d喷施抑制发芽效果最好;收获期雨水较少年份(2018年)施用50 mg·L -1喷施浓度即可,中科麦138生理成熟期及蜡熟期的粒发芽率较对照下降13.8和3.8个百分点,绵麦367则较对照下降23.5和9.7个百分点;收获期雨水较多年份(2019年)则以100 mg·L -1喷施浓度抑制作用更优,中科麦138生理成熟期及蜡熟期的粒发芽率较对照下降22.5和19.6个百分点,绵麦367则较对照下降10.0和12.0个百分点;同时,不同时期不同浓度ABA处理后对种子发芽的抑制作用均在收获后60 d得以解除,不影响后续正常发芽。(2)外源喷施ABA后可降低α-淀粉酶活性,对穗发芽敏感期(花后35—45 d)α-淀粉酶活性抑制作用显著,以花后30 d喷施抑制效应最好,该时期喷施100 mg·L -1ABA,花后45 d籽粒α-淀粉酶活性较对照下降30.1%,可溶性糖含量较对照下降41.9%,而淀粉含量较对照提高10.2个百分点,淀粉水解受到抑制。(3)喷施ABA后可提高蛋白质质量,100 mg·L -1喷施浓度处理的沉淀值较CK提高4.3%—8.8%;外源喷施ABA对籽粒淀粉组分及面粉糊化特性影响更大,处理后支链淀粉含量增加进而总淀粉含量增加;100 mg·L -1喷施浓度处理的支链淀粉和总淀粉含量分别较CK增加8.1和7.6个百分点,直/支比下降18.2%,面粉糊化特性进一步改善,降落值、峰值粘度和崩解值提升,随浓度增大呈增加趋势,100 mg·L -1喷施浓度处理的降落值、峰值粘度和崩解值较CK提高幅度分别为20.9%—24.2%、26.5%—51.4%和12.4%—43.4%。【结论】西南麦区于花后30 d喷施50—100 mg·L -1ABA,可有效抑制穗发芽敏感期α-淀粉酶活性,抑制淀粉水解,降低穗发芽率和粒发芽率,提高蛋白质质量,并可增加支链淀粉含量和总淀粉含量,降低直/支比,改善面粉的糊化特性,可作为西南麦区生育后期增强小麦穗发芽抗性及减损提质的重要栽培管理措施,建议加大其示范与推广力度。

关键词: ABA, 小麦, 穗发芽, 籽粒品质

Abstract:

【Objective】Pre-harvest sprouting (PHS) resulted from higher rainfall during the harvest period is one of the crucial reasons degrade food uses quality of wheat flour in Southwest wheat production region of China. This study was carried out to investigate the inhibition effect of exogenous abscisic acid (ABA) to pre-harvest sprouting, and the changes in grain quality with respecting to PHS sensitivity was also measured. 【Method】Two cultivators with pre-harvest sprouting resistance (sensitive: white-seeded wheat Zhongkemai 138; insensitive: red-seeded wheat Mianmai 367) were used as experimental materials. The anti-photodegraded ABA (0, 50, and 100 mg·L -1) were sprayed at 15 (initial filling stage), 30 (late filling stage) and 35 days (physiological maturity stage) after anthesis (DAA) to investigate the changes in germination traits, α-amylase activity and grain quality. 【Result】 (1) The application of 50-100 mg·L -1 ABA at 30 DAA could inhibit PHS, with the optimum spraying time achieved at 30 DAA. In normal years (2018), the wheat spraying with 50 mg·L -1ABA was better than other treatments as compared to the control, the germination rate of Zhongkemai 138 was reduced by 13.8 and 3.8 percentage points at physiological maturity and dough stage, respectively, and the PHS sensitivity cultivator (Mianmai 367)was decreased by 23.5 and 9.7 percentage points, respectively, as compared with control. In 2019 (rainy season), spraying with 100 mg·L -1 ABA performed better than other treatments with the germination rate of Zhongkemai 138 was reduced by 22.5 and 19.6 percentage points during the physiological maturity and dough stage, respectively, as compared with control, and PHS sensitivity cultivator (Mianmai 367) was reduced by 10.0 and 12.0 percentage points than that of control, respectively. Meanwhile, the inhibitory effects of ABA were all released at 60 days after harvest, and did not affect subsequent seed germination. (2) Exogenous application of ABA could reduce α-amylase activity and inhibited α-amylase activity, which further delayed the hydrolysis of starch in 35-45 DAA. Compared with the control, the α-amylase activity and soluble sugar content were decreased by 30.1%, and 41.9%, respectively, and the starch content was 10.2 percentage points higher when the 100 mg·L -1 ABA was spraying at 30 DAA. (3) The application of 100 mg·L -1 ABA improved the precipitation value by 4.3%-8.8%, and exogenous application of ABA showed a greater impact on the starch content with the amylopectin content and total starch content increased by 8.1 and 7.6 percentage points, and the amylose/amylopectin ratio decreased by 18.2%. Further, the pasting properties of flour were also improved with the falling value, peak viscosity and disintegration value was 20.9%-24.2%, 26.5%-51.4% and 12.4%-43.4% higher than that of CK, respectively. 【Conclusion】The application of 50-100 mg·L -1 ABA at 30 DAA could effectively reduce pre-harvest sprouting by inhibiting α-amylase induced starch hydrolysis without decline the protein quality, and thereby improved the pasting properties of wheat flour by enhancing amylopectin and total starch contents, reducing the ratio of amylase and amylopectin. Therefore, the application of 50-100mg·L -1 ABA at 30 DAA was highly recommended for farmers to enhance the pre-harvest sprouting resistance and reducing the losses in food uses quality in Southwest wheat production region of China.

Key words: abscisic acid, wheat, pre-harvest sprouting, grain quality