中国农业科学 ›› 2020, Vol. 53 ›› Issue (17): 3606-3619.doi: 10.3864/j.issn.0578-1752.2020.17.017
陈华枝(),祝智威(),蒋海宾,王杰,范元婵,范小雪,万洁琦,卢家轩,熊翠玲,郑燕珍,付中民,陈大福,郭睿()
收稿日期:
2019-12-25
接受日期:
2020-02-04
出版日期:
2020-09-01
发布日期:
2020-09-11
通讯作者:
郭睿
作者简介:
陈华枝,E-mail:基金资助:
CHEN HuaZhi(),ZHU ZhiWei(),JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui()
Received:
2019-12-25
Accepted:
2020-02-04
Online:
2020-09-01
Published:
2020-09-11
Contact:
Rui GUO
摘要:
【目的】蜜蜂球囊菌(Ascosphaera apis,球囊菌)专性侵染蜜蜂幼虫而导致白垩病。本研究旨在通过small RNA-seq(sRNA-seq)技术和生物信息学方法对球囊菌纯化菌丝(AaM)和纯化孢子(AaS)进行深度测序和比较分析,明确球囊菌菌丝miRNA和孢子miRNA的数量、结构和表达谱差异,并揭示菌丝和孢子共有miRNA、特有miRNA和差异表达miRNA(differentially expressed miRNA,DEmiRNA)及其靶mRNA与球囊菌菌丝和孢子生长、发育和病原致病性的潜在关系。【方法】实验室条件下获得纯培养的球囊菌,利用sRNA-seq技术对AaM和AaS分别进行测序,通过对原始读段(raw reads)进行过滤和质控获得有效标签序列(clean tags)。通过Venn分析筛选菌丝和孢子共有miRNA和特有miRNA。根据P≤0.05且|log2 fold change|≥1的标准筛选AaM vs AaS的DEmiRNA。对上述共有miRNA、特有miRNA和DEmiRNA的靶mRNA进行预测,并对靶mRNA进行GO及KEGG数据库注释。根据靶向结合关系构建DEmiRNA和靶mRNA的调控网络。利用RT-qPCR验证测序数据的可靠性。【结果】AaM和AaS中分别得到12 982 320和12 708 832条raw reads,经过滤和质控分别得到10 800 101和9 888 848条clean tags。AaM中miRNA的长度介于18—26 nt,AaS中miRNA的长度介于18—24 nt,分布miRNA数量最多的长度均为18 nt,AaM和AaS中首位碱基为U的miRNA数量最多。AaM和AaS中表达量最高的miRNA均为miR6478-x、miR10516-x和miR482-x。菌丝和孢子共有miRNA靶向结合5 946个mRNA,二者特有miRNA分别靶向结合6 141和6 346个mRNA。共有miRNA的靶mRNA主要参与代谢进程、细胞进程和催化活性等42个功能条目,以及翻译、碳水化合物代谢和能量代谢等120条通路。AaM vs AaS比较组包含93个DEmiRNA,可靶向结合6 090个mRNA,这些靶mRNA可注释到38个功能条目和120条通路。DEmiRNA与靶mRNA之间形成较为复杂的调控网络,miR-4968-y位于调控网络的中心且能够靶向结合多达118个mRNA。RT-qPCR结果显示5个DEmiRNA的表达趋势与测序数据一致,证实了本研究中测序数据的可靠性。【结论】球囊菌菌丝和孢子中的miRNA具有类似的结构特征,但表达谱表现出明显差异;菌丝和孢子可能通过特异性表达和差异表达部分miRNA对其生长、发育和生殖进行调控。
陈华枝,祝智威,蒋海宾,王杰,范元婵,范小雪,万洁琦,卢家轩,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析[J]. 中国农业科学, 2020, 53(17): 3606-3619.
CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore[J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
表1
本研究使用的引物"
引物名称 Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
Loop-miR5658-x | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATCATC |
Loop-miR-10285-y | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAATTGG |
Loop-miR-3245-y | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCCCGGAC |
Loop-miR4404-x | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCCAGTCT |
Loop-miR-9-z | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATACAG |
miR5658-x-F | ACACTCCAGCTGGGCGATGATGAT |
miR-10285-y-F | ACACTCCAGCTGGGTCATTTGTGGT |
miR-3245-y-F | ACACTCCAGCTGGGCTTGGGAGAG |
miR4404-x-F | ACACTCCAGCTGGGAATACGTAGA |
miR-9-z-F | ACACTCCAGCTGGGTCTTTGGTTATCTAG |
Universal-R | CTCAACTGGTGTCGTGGA |
actin-F | CAGGAAAGGCTATGTTCGC |
actin-R | ATTACCGAGGAGCAAGACG |
表3
AaM中表达量最高的前10位miRNA"
miRNA ID | miRNA序列 miRNA sequence | TPM值 TPM value |
---|---|---|
miR6478-x | GCGACTTTAGCTCAGTTGG | 294585.5787 |
miR10516-x | GATCCTCTGCAGACGACTGA | 200923.7875 |
miR482-x | TTGGAGTGGGTGGGTTGGGAA | 99563.767 |
miR-8440-y | GTTCGTTTCTGGGTCAGG | 84423.9158 |
miR5658-x | CGATGATGATGATGATGA | 30792.9176 |
miR-11987-x | AGGAAACTCTGGTGGAGGT | 27713.6259 |
miR-10285-y | TCATTTGTGGTCCAATTGT | 11547.3441 |
miR-3245-y | CTTGGGAGAGGTCCGGGG | 10264.3059 |
miR-1332-y | CAGTTGGTTAGAGCTGGT | 9494.4829 |
表4
AaS中表达量最高的前10位miRNA"
miRNA ID | miRNA序列 miRNA sequence | TPM值 TPM value |
---|---|---|
miR6478-x | GCGACTTTAGCTCAGTTGG | 209814.8692 |
miR482-x | TTGGAGTGGGTGGGTTGGGAA | 71995.2983 |
miR10516-x | GATCCTCTGCAGACGACTGA | 71407.5815 |
miR-21-x | TAGCTTATCAGACTGATGTTGA | 32324.4196 |
miR-8440-y | GTTCGTTTCTGGGTCAGG | 31736.7029 |
miR-143-y | TGAGATGAAGCACTGTAGCTCT | 29973.5527 |
miR-11987-x | AGGAAACTCTGGTGGAGGT | 26741.1108 |
let-7-x | TGAGGTAGTAGGTTGTATAGTT | 19688.5101 |
novel-m0040-3p | TCTTGAACTGAGAGATGGGGC | 16456.0682 |
miR159-y | TCTTGGGGTGAAGGGCGG | 15574.4931 |
表5
AaM vs AaS比较组中前10位上调和下调miRNA"
差异表达miRNA ID DEmiRNA ID | AaM的TPM值 TPM value in AaM | AaS的TPM值 TPM value in AaS | Log2差异倍数 Log2FC | P 值 P value |
---|---|---|---|---|
上调miRNA Up-regulated miRNAs | ||||
novel-m0040-3p | 0.01 | 16456.0682 | 20.65019 | 5.98E-17 |
novel-m0016-3p | 0.01 | 14399.0597 | 20.45754 | 3.77E-15 |
miR319-y | 0.01 | 12342.0511 | 20.23515 | 4.75E-13 |
novel-m0010-3p | 0.01 | 8521.8924 | 19.70081 | 3.80E-09 |
novel-m0028-3p | 0.01 | 7346.459 | 19.48669 | 6.05E-08 |
miR-1546-x | 0.01 | 5583.3088 | 19.09076 | 3.85E-06 |
miR-6882-x | 0.01 | 5289.4505 | 19.01276 | 7.69E-06 |
novel-m0001-3p | 0.01 | 4995.5921 | 18.9303 | 1.54E-05 |
novel-m0017-5p | 0.01 | 4701.7338 | 18.84283 | 3.07E-05 |
miR-992-x | 0.01 | 4701.7338 | 18.84283 | 3.07E-05 |
下调miRNA Down-regulated miRNAs | ||||
miR-4028-y | 8211.4447 | 0.01 | -19.6472765 | 4.77E-10 |
miR-4171-x | 3079.2918 | 0.01 | -18.2322391 | 0.00049 |
miR7787-y | 2822.6841 | 0.01 | -18.1067082 | 0.000979 |
miR-92-x | 2566.0765 | 0.01 | -17.9692047 | 0.0020 |
novel-m0011-3p | 2309.4688 | 0.01 | -17.8172015 | 0.0040 |
miR5782-y | 2052.861 | 0.01 | -17.6473 | 0.0078 |
novel-m0013-5p | 2052.861 | 0.01 | -17.6473 | 0.0078 |
novel-m0031-3p | 2052.861 | 0.01 | -17.6473 | 0.0078 |
novel-m0036-5p | 2052.861 | 0.01 | -17.6473 | 0.0078 |
miR-3533-y | 1796.254 | 0.01 | -17.4546 | 0.0156 |
novel-m0003-5p | 1796.254 | 0.01 | -17.4546 | 0.0156 |
novel-m0006-5p | 1796.254 | 0.01 | -17.4546 | 0.0156 |
表6
AaM vs AaS比较组中DEmiRNA的靶mRNA注释数前10位通路"
通路名称 Pathway name | 通路 ID Pathway ID | 靶mRNA数 Number of target mRNAs | P 值 P value |
---|---|---|---|
新陈代谢通路Metabolic pathway | ko01100 | 652 | 0.174 |
次级代谢物的生物合成Biosynthesis of secondary metabolites | ko01110 | 285 | 5.63E-05 |
抗生素的生物合成Biosynthesis of antibiotics | ko01130 | 212 | 0.002 |
微生物在不同环境中的代谢Microbial metabolism in diverse environments | ko01120 | 172 | 0.001 |
氨基酸的生物合成Biosynthesis of amino acids | ko01230 | 115 | 0.012 |
碳代谢Carbon metabolism | ko01200 | 101 | 0.025 |
嘌呤代谢Purine metabolism | ko00230 | 81 | 0.916 |
核糖体Ribosome | ko03010 | 78 | 1.000 |
剪接体Spliceosome | ko03040 | 77 | 0.861 |
RNA转运RNA transport | ko03013 | 76 | 0.936 |
[1] |
ARONSTEIN K A, MURRAY K D. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010,103(Suppl. 1):S20-S29.
doi: 10.1016/j.jip.2009.06.018 |
[2] |
MAXFIELD-TAYLOR S A, MUJIC A B, RAO S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE, 2015,10(4):e0124868.
pmid: 25885679 |
[3] |
EVISON S E. Chalkbrood: Epidemiological perspectives from the host-parasite relationship. Current Opinion in Insect Science, 2015,10:65-70.
doi: 10.1016/j.cois.2015.04.015 pmid: 29588016 |
[4] |
SPILTOIR C F. Life cycle of Ascosphaera apis (Pericystis apis). American Journal of Botany, 1955,42(6):501-518.
doi: 10.1002/ajb2.1955.42.issue-6 |
[5] |
WIJAYAWARDENE N N, HYDE K D, LUMBSCH H T, LIU J K, MAHARACHCHIKUMBURA S S N, EKANAYAKA A H, TIAN Q, PHOOKAMSAK R. Outline of Ascomycota: 2017. Fungal Diversity, 2018,88:167-263.
doi: 10.1007/s13225-018-0394-8 |
[6] |
PÖGGELER S. Mating-type genes for classical strain improvements of ascomycetes. Applied Microbiology and Biotechnology, 2001,56(5/6):589-601.
doi: 10.1007/s002530100721 |
[7] |
FLORES J M, SPIVAK M, GUTIERREZ I. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Veterinary Microbiology, 2005,108(1/2):141-144.
doi: 10.1016/j.vetmic.2005.03.005 |
[8] |
FLORES J M, GUTIÉRREZ I, ESPEJO R. The role of pollen in chalkbrood disease in Apis mellifera: Transmission and predisposing conditions. Mycologia, 2005,97(6):1171-1176.
doi: 10.3852/mycologia.97.6.1171 pmid: 16722211 |
[9] |
BARTEL D P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326 |
[10] |
BURKLEW C E, XIE F U, ASHLOCK J, ZHANG B H. Expression of microRNAs and their targets regulates floral development in tobacco ( Nicotiana tabacum). Functional and Integrative Genomics, 2014,14(2):299-306.
doi: 10.1007/s10142-014-0359-2 pmid: 24448659 |
[11] |
KIDNER C A, MARTIENSSEN R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004,428(6978):81-84.
doi: 10.1038/nature02366 pmid: 14999284 |
[12] |
LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochromatic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75(5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[13] |
GRIMSON A, SRIVASTAVA M, FAHEY B, WOODCROFT B J, CHIANG H R, KING N, DEGNAN B M, ROKHSAR D S, BARTEL D P. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature, 2008,455(7217):1193-1197.
doi: 10.1038/nature07415 pmid: 18830242 |
[14] |
LLAVE C, KASSCHAU K D, RECTOR M A, CARRINGTON J C. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002,14(7):1605-1619.
pmid: 12119378 |
[15] |
MOLNÁR A, SCHWACH F, STUDHOLME D J, THUENEMANN E C, BAULCOMBE D C. MiRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 2007,447(7148):1126-1129.
doi: 10.1038/nature05903 pmid: 17538623 |
[16] |
ZHAO T, LI G, MI S, LI S, HANNON G J, WANG X J, QI Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 2007,21(10):1190-1203.
doi: 10.1101/gad.1543507 pmid: 17470535 |
[17] |
CHEN D F, GUO R, XU X J, XIONG C L, LIANG Q, ZHENG Y Z, LUO Q, ZHANG Z N, HUANG Z J, KUMAR D, XI W J, ZOU X, LIU M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017,621:40-50.
doi: 10.1016/j.gene.2017.04.022 pmid: 28427951 |
[18] |
GUO R, CHEN D F, DIAO Q Y, XIONG C L, ZHENG Y Z, HOU C S. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019,166:107210.
doi: 10.1016/j.jip.2019.107210 pmid: 31211962 |
[19] | 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411. |
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica. Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese) | |
[20] | 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878. |
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese) | |
[21] | 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44. |
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZHANG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese) | |
[22] |
GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, LI W D, KUMAR D, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
doi: 10.1016/j.jip.2018.06.001 pmid: 29894727 |
[23] |
GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018,678:17-22.
doi: 10.1016/j.gene.2018.07.076 pmid: 30077766 |
[24] |
郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
doi: 10.13343/j.cnki.wsxb.20170535 |
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170535 |
|
[25] |
JENSEN A B, ARONSTEIN K, FLORES J M, VOJVODIC S, PALACIO M A, SPIVAK M. Standard methods for fungal brood disease research. Journal of Apicultural Research, 2013,52(1): DOI: 10.3896/IBRA.1.52.1.13.
doi: 10.3896/IBRA.1.52.1.13 pmid: 24198438 |
[26] | 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018,51(21):4197-4209. |
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018,51(21):4197-4209. (in Chinese) | |
[27] | 杜宇, 范小雪, 蒋海宾, 王杰, 范元婵, 祝智威, 周丁丁, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用. 中国农业科学, 2020,53(12):2512-2526. |
DU Y, FAN X X, JIANG H B, WANG J, FAN Y C, ZHU Z Z, ZHOU D D, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. The potential role of microRNAs and microRNA-mediated competitive endogenous networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2020,53(12):2512-2526. (in Chinese) | |
[28] |
RITCHIE W. microRNA target prediction. Methods in Molecular Biology, 2017,1513:193-200.
doi: 10.1007/978-1-4939-6539-7_13 pmid: 27807838 |
[29] |
REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes. RNA, 2004,10(10):1507-1517.
doi: 10.1261/rna.5248604 pmid: 15383676 |
[30] |
KRÜGER J, REHMSMEIER M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Research, 2006,34:W451-W454.
doi: 10.1093/nar/gkl243 pmid: 16845047 |
[31] |
ALLEN E, XIE Z X, GUSTAFSON A M, CARRINGTON J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028 |
[32] |
ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[33] |
CHEN C F, RIDZON D A, BROOMER A J, ZHOU Z H, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005,33(20):e179.
doi: 10.1093/nar/gni178 pmid: 16314309 |
[34] | 郭睿, 杜宇, 周倪红, 刘思亚, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 耿四海, 周丁丁, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌胁迫后期的差异表达微小RNA及其靶基因分析. 昆虫学报, 2019,62(1):49-60. |
GUO R, DU Y, ZHOU N H, LIU S Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, GENG S H, ZHOU D D, CHEN D F. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica, 2019,62(1):49-60. (in Chinese) | |
[35] |
ZHOU Q, WANG Z X, ZHANG J, MENG H M, HUANG B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biology, 2012,116(11):1156-1162.
doi: 10.1016/j.funbio.2012.09.001 pmid: 23153806 |
[36] |
SHAO Y, TANG J, CHEN S L, WU Y H, WANG K, MA B, ZHOU Q M, CHEN A H, WANG Y L. MilR4 and milR16 mediated fruiting body development in the medicinal fungus Cordyceps militaris. Frontiers in Microbiology, 2019,10:83.
doi: 10.3389/fmicb.2019.00083 pmid: 30761116 |
[37] |
LAU A Y T, CHENG X, CHENG C K, NONG W, CHEUNG M K, CHAN R H, HUI J H L, KWAN H S. Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS ONE, 2018,13(9):e0198234.
doi: 10.1371/journal.pone.0198234 pmid: 30231028 |
[38] |
ZENG W P, WANG J, WANG Y, LING J, FU Y P, XIE J T, JIANG D H, CHEN T, LIU H Q, CHENG J S. Dicer-like proteins regulate sexual development via the biogenesis of perithecium-specific microRNAs in a plant pathogenic fungus Fusarium graminearum. Frontiers in Microbiology, 2018,9:818.
doi: 10.3389/fmicb.2018.00818 pmid: 29755439 |
[39] |
LIU T, HU J, ZUO Y, JIN Y, HOU J. Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing. Molecular Genetics and Genomics, 2016,291(2):587-596.
doi: 10.1007/s00438-015-1128-1 pmid: 26481645 |
[40] |
LAU S K, CHOW W N, WONG A Y, YEUNG J M, BAO J, ZHANG N, LOK S, WOO P C, YUEN K Y. Identification of microRNA-Like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Neglected Tropical Diseases, 2013,7(8):e2398.
doi: 10.1371/journal.pntd.0002398 pmid: 23991243 |
[41] |
LI J, HULL J J, LIANG S, WANG Q, CHEN L, ZHANG Q, WANG M, MANSOOR S, ZHANG X, JIN S. Genome-wide analysis of cotton miRNAs during whitefly infestation offers new insights into plant-herbivore interaction. International Journal of Molecular Sciences, 2019,20(21):e5357.
doi: 10.3390/ijms20215357 pmid: 31661835 |
[42] | 熊翠玲, 杜宇, 陈大福, 郑燕珍, 付中民, 王海朋, 耿四海, 陈华枝, 周丁丁, 吴素珍, 石彩云, 郭睿. 意大利蜜蜂幼虫肠道的miRNAs的生物信息学预测及分析. 应用昆虫学报, 2018,55(6):1023-1033. |
XIONG C L, DU Y, CHEN D F, ZHENG Y Z, FU Z M, WANG H P, GENG S H, CHEN H Z, ZHOU D D, WU S Z, SHI C Y, GUO R. Bioinformatic prediction and analysis of miRNAs in the Apis mellifera ligustica larval gut. Chinese Journal of Applied Entomology, 2018,55(6):1023-1033. (in Chinese) | |
[43] | GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, KUMAR D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49(5):660-670. |
[44] | 黄居敏, 张普照, 王芳, 李旸, 冯少俊, 杨明. 白僵菌的代谢产物及药理活性研究进展. 中国生化药物杂志, 2014,34(9):167-173. |
HUANG J M, ZHANG P Z, WANG F, LI Y, FENG S J, YANG M. Advanced studies on metabolites and pharmacological of Beauveria bassiana. Chinese Journal of Biochemical and Pharmaceuticals, 2014,34(9):167-173. (in Chinese) | |
[45] |
CALVO A M, WILSON R A, BOK J W, KELLER N P. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002,66(3):447-459.
doi: 10.1128/mmbr.66.3.447-459.2002 pmid: 12208999 |
[46] |
CORNMAN R S, BENNETT A K, MURRAY K D, EVANS J D, ELSIK C G, ARONSTEIN K. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: Implications for host pathogenesis. BMC Genomics, 2012,13:285.
doi: 10.1186/1471-2164-13-285 pmid: 22747707 |
[47] |
WOLF J C, MIROCHA C J. Regulation of sexual reproduction in Gibberella zeae (Fusarium roxeum “Graminearum”) by F-2 (Zearalenone). Canadian Journal of Microbiology, 1973,19(6):725-734.
doi: 10.1139/m73-117 pmid: 4712507 |
[48] | 李琼, 崔春来, 宋红生, 王四宝. Mro-miR-33在绿僵菌产孢中的作用. 菌物学报, 2017,36(6):671-678. |
LI Q, CUI C L, SONG H S, WANG S B. The effects of mro-miR-33 on the conidial production in Metarhizium robertsii. Mycosystema, 2017,36(6):671-678. (in Chinese) | |
[49] | 闫思源, 姜学军. 细胞自噬及真菌中自噬研究概述. 菌物学报, 2015,34(5):871-879. |
YAN S Y, JIANG X J. Overview of autophagy and related research in fungi. Mycosystema, 2015,34(5):871-879. (in Chinese) | |
[50] |
KIKUMA T, KITAMOTO K. Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiology Letters, 2011,316(1):61-69.
doi: 10.1111/j.1574-6968.2010.02192.x pmid: 21204928 |
[51] |
RICHIE D L, FULLER K K, FORTWENDEL J, MILEY M D, MCCARTHY J W, FELDMESSER M, RHODES J C, ASKEW D S. Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryotic Cell, 2007,6(12):2437-2447.
doi: 10.1128/EC.00224-07 pmid: 17921348 |
[52] |
ZHAO X, MEHRABI R, XU J R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 2007,6(10):1701-1714.
doi: 10.1128/EC.00216-07 pmid: 17715363 |
[53] |
IGBARIA A, LEV S, ROSE M S, LEE B N, HADAR R, DEGANI O, HORWITZ B A. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Molecular Plant-Microbe Interactions, 2008,21(6):769-780.
pmid: 18473669 |
[54] |
CHEN X X, XU C, QIAN Y, LIU R, ZHANG Q Q, ZENG G H, ZHANG X, ZHAO H, FANG W G. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environmental Microbiology, 2016,18(3):1048-1062.
doi: 10.1111/1462-2920.13198 pmid: 26714892 |
[55] |
LECLERQUE A, WAN H , ABSCHÜTZ A, CHEN S, MITINA G V, ZIMMERMANN G, SCHAIRER H. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Current Genetics, 2004,45(2):111-119.
doi: 10.1007/s00294-003-0468-2 pmid: 14634789 |
[56] |
FANG W, PEI Y, BIDOCHKA M J. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 2006,52(7):623-626.
doi: 10.1139/w06-014 pmid: 16917517 |
[57] |
ZHANG Y J, ZHAO J J, XIE M, PENG D L. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains. Journal of Microbiological Methods, 2014,105:168-173.
doi: 10.1016/j.mimet.2014.07.033 pmid: 25107375 |
[1] | 李晓菁,张思雨,刘迪,袁晓伟,李兴盛,石延霞,谢学文,李磊,范腾飞,李宝聚,柴阿丽. 芸薹根肿菌活细胞PMAxx-qPCR快速定量检测方法的建立与应用[J]. 中国农业科学, 2022, 55(10): 1938-1948. |
[2] | 冯睿蓉,付中民,杜宇,张文德,范小雪,王海朋,万洁琦,周紫彧,康育欣,陈大福,郭睿,史培颖. 中华蜜蜂幼虫肠道中微小RNA的鉴定及分析[J]. 中国农业科学, 2022, 55(1): 208-218. |
[3] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[4] | 陈华枝,范元婵,蒋海宾,王杰,范小雪,祝智威,隆琦,蔡宗兵,郑燕珍,付中民,徐国钧,陈大福,郭睿. 基于纳米孔全长转录组数据完善东方蜜蜂微孢子虫的基因组注释[J]. 中国农业科学, 2021, 54(6): 1288-1300. |
[5] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[6] | 陈华枝,王杰,祝智威,蒋海宾,范元婵,范小雪,万洁琦,卢家轩,郑燕珍,付中民,徐国钧,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中长链非编码RNA的比较及潜在功能分析[J]. 中国农业科学, 2021, 54(2): 435-448. |
[7] | 周丁丁, 范元婵, 王杰, 蒋海宾, 祝智威, 范小雪, 陈华枝, 杜宇, 周紫彧, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌中长链非编码RNA的调控作用[J]. 中国农业科学, 2021, 54(1): 224-238. |
[8] | 段应策,胡姿仪,杨帆,李金涛,邬向丽,张瑞颖. pH和缓冲作用对香菇菌丝生长的影响[J]. 中国农业科学, 2020, 53(22): 4683-4690. |
[9] | 耿四海,石彩云,范小雪,王杰,祝智威,蒋海宾,范元婵,陈华枝,杜宇,王心蕊,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制[J]. 中国农业科学, 2020, 53(15): 3187-3204. |
[10] | 杜宇,范小雪,蒋海宾,王杰,范元婵,祝智威,周丁丁,万洁琦,卢家轩,熊翠玲,郑燕珍,陈大福,郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用[J]. 中国农业科学, 2020, 53(12): 2512-2526. |
[11] | 周丁丁,史小玉,王杰,范元婵,祝智威,蒋海宾,范小雪,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿. 东方蜜蜂微孢子虫孢子中长链非编码RNA的竞争性内源RNA调控网络及潜在功能[J]. 中国农业科学, 2020, 53(10): 2122-2136. |
[12] | 付中民,陈华枝,刘思亚,祝智威,范小雪,范元婵,万洁琦,张璐,熊翠玲,徐国钧,陈大福,郭睿. 意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答[J]. 中国农业科学, 2019, 52(17): 3069-3082. |
[13] | 易敏,吕青,刘柯柯,王礼君,吴玉娇,周泽扬,龙梦娴. 家蚕微孢子虫极管蛋白2(NbPTP2)的表达、纯化和定位特征[J]. 中国农业科学, 2019, 52(10): 1830-1838. |
[14] | 郭睿,杜宇,童新宇,熊翠玲,郑燕珍,徐国钧,王海朋,耿四海,周丁丁,郭意龙,吴素珍,陈大福. 意大利蜜蜂幼虫肠道在球囊菌侵染前期的 差异表达microRNA及其调控网络[J]. 中国农业科学, 2019, 52(1): 166-180. |
[15] | 郭睿,杜宇,熊翠玲,郑燕珍,付中民,徐国钧,王海朋,陈华枝,耿四海,周丁丁,石彩云,赵红霞,陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达 microRNA及其调控网络[J]. 中国农业科学, 2018, 51(21): 4197-4209. |
|