[1] |
DIXON G R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation, 2009, 28(3): 194-202.
doi: 10.1007/s00344-009-9090-y
|
[2] |
HOWARD R J, STRELKOV S E, HARDING M W. Clubroot of cruciferous crops - new perspectives on an old disease. Canadian Journal of Plant Pathology, 2010, 32(1): 43-57.
doi: 10.1080/07060661003621761
|
[3] |
DEVOS S, VISSENBERG K, VERBELEN J P, PRINSEN E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytologist, 2005, 166(1): 241-250.
doi: 10.1111/j.1469-8137.2004.01304.x
|
[4] |
HWANG S F, STRELKOV S E, FENG J, GOSSEN B D, HOWARD R J. Plasmodiophora brassicae: A review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Molecular Plant Pathology, 2012, 13(2): 105-113.
doi: 10.1111/j.1364-3703.2011.00729.x
|
[5] |
TSO H H, GALINDO-GONZALEZ L, STRELKOV S E. Current and future pathotyping platforms for Plasmodiophora brassicae in Canada. Plants, 2021, 10(7): 1446.
doi: 10.3390/plants10071446
|
[6] |
CHAI A L, XIE X W, SHI Y X, LI B J. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Canadian Journal of Plant Pathology, 2014, 36: 142-153.
doi: 10.1080/07060661.2013.868829
|
[7] |
DONALD C, PORTER I. Integrated control of clubroot. Journal of Plant Growth Regulation, 2009, 28: 289-303.
doi: 10.1007/s00344-009-9094-7
|
[8] |
TSUSHIMA S. Perspective of integrated pest management - A case study: Clubroot disease of crucifers. Journal of Pesticide Science, 2000, 25(3): 296-299.
doi: 10.1584/jpestics.25.296
|
[9] |
ITO S, MAEHARA T, MARUNO E, TANAKA S, KAMEYA-IWAKI M, KISHI F. Development of a PCR-based assay for the detection of Plasmodiophora brassicae in soil. Journal of Phytopathology, 1999, 147(2): 83-88.
doi: 10.1111/j.1439-0434.1999.tb03812.x
|
[10] |
杨佩文, 杨勤忠, 王群, 李家瑞, 曾莉. 十字花科蔬菜根肿病菌的PCR检测. 云南农业大学学报, 2002, 17(2): 137-139, 157.
|
|
YANG P W, YANG Q Z, WANG Q, LI J R, ZENG L. PCR detection of Plasmodiophora brassicae causing cruciferae clubroot. Journal of Yunnan Agricultural University, 2002, 17(2): 137-139, 157. (in Chinese)
|
[11] |
CAO T, TEWARI J, STRELKOV S E. Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers, in plant and soil. Plant Disease, 2007, 91(1): 80-87.
doi: 10.1094/PD-91-0080
|
[12] |
FAGGIAN R, STRELKOV S E. Detection and measurement of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 2009, 28: 282-288.
doi: 10.1007/s00344-009-9092-9
|
[13] |
FAGGIAN R, BULMAN S R, LAWRIE A C, PORTER I J. Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water. Phytopathology, 1999, 89(5): 392-397.
doi: 10.1094/PHYTO.1999.89.5.392
|
[14] |
WALLENHAMMAR A C, ARWIDSSON O. Detection of Plasmodiophora brassicae by PCR in naturally infested soils. European Journal of Plant Pathology, 2001, 107(3): 313-321.
doi: 10.1023/A:1011224503200
|
[15] |
李淼, 周丽洪, 刘雅婷, 刘峰, 杨俊, 姬广海. 云南省十字花科蔬菜根肿病的实时荧光定量PCR检测. 云南农业大学学报 (自然科学), 2016, 31(1): 43-48.
|
|
LI M, ZHOU L H, LIU Y T, LIU F, YANG J, JI G H. Detection of Plasmodiophora brassicae with real-time quantitative PCR in Yunnan Province. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(1): 43-48. (in Chinese)
|
[16] |
WALLENHAMMAR A C, ALMQUIST C, SÖDERSTRÖM M, JONSSON A. In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR. Plant Pathology, 2012, 61(1): 16-28.
doi: 10.1111/j.1365-3059.2011.02477.x
|
[17] |
LI J P, LI Y, SHI Y X, XIE X W, CHAI A L, LI B J. Development of a real-time PCR assay for Plasmodiophora brassicae and its detection in soil samples. Journal of Integrative Agriculture, 2013, 12(10): 1799-1806.
doi: 10.1016/S2095-3119(13)60491-8
|
[18] |
CHAI A L, LI J P, XIE X W, SHI Y X, LI B J. Dissemination of Plasmodiophora brassicae in livestock manure detected by qPCR. Plant Pathology, 2016, 65(1): 137-144.
doi: 10.1111/ppa.12391
|
[19] |
WEN R, LEE J, CHU M, TONU N, DUMONCEAUX T, GOSSEN B D, YU F, PENG G. Quantification of Plasmodiophora brassicae resting spores in soils using droplet digital PCR (ddPCR). Plant Disease, 2020, 104(4): 1188-1194.
doi: 10.1094/PDIS-03-19-0584-RE
|
[20] |
RENNIE D C, MANOLII V P, CAO T, HWANG S F, HOWARD R J, STRELKOV S E. Direct evidence of surface infestation of seeds and tubers by Plasmodiophora brassicae and quantification of spore loads. Plant Pathology, 2011, 60(5): 811-819.
doi: 10.1111/j.1365-3059.2011.02449.x
|
[21] |
AL-DAOUD F, GOSSEN B D, ROBSON J, MCDONALD M R. Propidium monoazide improves quantification of resting spores of Plasmodiophora brassicae with qPCR. Plant Disease, 2017, 101(3): 442-447.
doi: 10.1094/PDIS-05-16-0715-RE
|
[22] |
NOCKER A, CAMPER A K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Applied and Environmental Microbiology, 2006, 72(3): 1997-2004.
doi: 10.1128/AEM.72.3.1997-2004.2006
|
[23] |
LIU Y, MUSTAPHA A. Detection of viable Escherichia coli O157: H7 in ground beef by propidium monoazide real-time PCR. International Journal of Food Microbiology, 2014, 170: 48-54.
doi: 10.1016/j.ijfoodmicro.2013.10.026
|
[24] |
WANG S, LEVIN R E. Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. Journal of Microbiological Methods, 2006, 64(1): 1-8.
doi: 10.1016/j.mimet.2005.04.023
|
[25] |
YÁÑEZ M A, NOCKER A, SORIA-SORIA E, MÚRTULA R, MARTÍNEZ L, CATALÁN V. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. Journal of Microbiological Methods, 2011, 85(2): 124-130.
doi: 10.1016/j.mimet.2011.02.004
|
[26] |
CRESPO-SEMPERE A, ESTIARTE N, MARÍN S, SANCHIS V, RAMOS A J. Propidium monoazide combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products. International Journal of Food Microbiology, 2013, 165(3): 214-220.
doi: 10.1016/j.ijfoodmicro.2013.05.017
|
[27] |
HONG W, XIONG J, NYARUABA R, LI J H, MUTURI E, LIU H, YU J P, YANG H, WEI H P. Rapid determination of infectious SARS-CoV-2 in PCR-positive samples by SDS-PMA assisted RT-qPCR. Science of the Total Environment, 2021, 797: 149085.
doi: 10.1016/j.scitotenv.2021.149085
|
[28] |
LUO L X, WALTERS C, BOLKAN H, LIU X L, LI J Q. Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathology, 2008, 57(2): 332-337.
doi: 10.1111/j.1365-3059.2007.01736.x
|
[29] |
MENG X L, CHAI A L, CHEN L, SHI Y X, XIE X W, MA Z H, LI B J. Rapid detection and quantification of viable Pseudomonas syringae pv. lachrymans cells in contaminated cucumber seeds using propidium monoazide and a real-time PCR assay. Canadian Journal of Plant Pathology, 2016, 38(3): 296-306.
doi: 10.1080/07060661.2016.1216897
|
[30] |
TIAN Q, FENG J J, HU J, ZHAO W J. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide. Scientific Reports, 2016, 6: 35457.
doi: 10.1038/srep35457
|
[31] |
HAN S N, JIANG N, LV Q Y, KAN Y M, HAO J J, LI J Q, LUO L X. Detection of Clavibacter michiganensis subsp. michiganensis in viable but nonculturable state from tomato seed using improved qPCR. PLoS ONE, 2018, 13(5): e0196525.
doi: 10.1371/journal.pone.0196525
|
[32] |
CHAI A L, BEN H Y, GUO W T, SHI Y X, XIE X W, LI L, LI B J. Quantification of viable cells of Pseudomonas syringae pv. tomato in tomato seed using propidium monoazide and a real-time PCR assay. Plant Disease, 2020, 104(8): 2225-2232.
doi: 10.1094/PDIS-11-19-2397-RE
pmid: 32452750
|