中国农业科学 ›› 2021, Vol. 54 ›› Issue (1): 224-238.doi: 10.3864/j.issn.0578-1752.2021.01.017
• 畜牧·兽医·资源昆虫 • 上一篇
周丁丁(),范元婵(),王杰,蒋海宾,祝智威,范小雪,陈华枝,杜宇,周紫彧,熊翠玲,郑燕珍,付中民,陈大福,郭睿()
收稿日期:
2020-01-03
接受日期:
2020-01-20
出版日期:
2021-01-01
发布日期:
2021-01-13
通讯作者:
郭睿
作者简介:
周丁丁,E-mail: 基金资助:
ZHOU DingDing(),FAN YuanChan(),WANG Jie,JIANG HaiBin,ZHU ZhiWei,FAN XiaoXue,CHEN HuaZhi,DU Yu,ZHOU ZiYu,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui()
Received:
2020-01-03
Accepted:
2020-01-20
Online:
2021-01-01
Published:
2021-01-13
Contact:
Rui GUO
摘要:
【目的】长链非编码RNA(long non-coding RNA,lncRNA)是一类二、三级结构高度保守,长度>200 nt且不具蛋白编码能力的RNA,在转录和转录后水平广泛参与调控剂量补偿、细胞分化和生长发育等生命活动。本研究基于前期获得的蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)菌丝和孢子混合样品的高质量lncRNA组学数据进行球囊菌lncRNA的顺式(cis)作用、反义lncRNA(antisense lncRNA)作用和竞争性内源RNA(competing endogenous RNA,ceRNA)作用的分析和探讨,以期揭示lncRNA在球囊菌中的潜在功能。【方法】基于lncRNA基因在染色体上的位置,预测lncRNA上下游100 kb以内的蛋白编码基因;使用Blast软件将上下游基因比对到GO和KEGG数据库,以获得功能和通路注释。利用LncTar软件对反义lncRNA的靶mRNA进行预测,并使用Blast软件将上述靶mRNA比对到KEGG和eggNOG数据库。利用TargetFinder软件预测lncRNA靶向结合的miRNA及miRNA靶向结合的mRNA,根据靶向结合关系建立lncRNA-miRNA和lncRNA-miRNA-mRNA调控网络,进而通过Cytoscape v3.7.1软件进行调控网络的可视化。利用RT-PCR对调控网络中的lncRNA、靶miRNA和靶mRNA进行表达验证。【结果】共预测出371个lncRNA的5 852个上下游基因,可注释到细胞进程、代谢进程和应激反应等48个功能条目,以及新陈代谢途径、次生代谢产物的生物合成和抗生素的生物合成等121条通路,表明部分lncRNA可通过顺式作用调节上下游基因的表达,从而参与调控球囊菌的生长发育及物质能量代谢等基础生命活动。球囊菌的7个lncRNA与7个靶mRNA存在序列互补关系,其中5个mRNA在eggNOG数据库中仅注释为假定蛋白,仅gene3444在KEGG数据库注释为核孔复合体蛋白An-Nup120和假定蛋白,表明上述1个反义lncRNA可能参与调控核孔复合体蛋白的生物合成等生物学过程。此外,共预测出227个lncRNA与73个miRNA之间存在靶向结合关系,其中多数lncRNA(79.02%)仅能结合1—2个miRNA,部分miRNA可被多个lncRNA靶向结合;进一步构建氧化磷酸化通路和MAPK信号通路相关的lncRNA-miRNA-mRNA调控网络,分析结果显示氧化磷酸化通路相关的222个lncRNA靶向78个miRNA及50个mRNA,MAPK信号通路相关的222个lncRNA靶向76个miRNA及46个mRNA,表明部分lncRNA通过ceRNA作用调控此两条通路,从而影响球囊菌的能量合成、环境适应以及生长发育等过程。【结论】部分lncRNA可能通过顺式作用和ceRNA作用调节球囊菌的生长发育、物质能量代谢以及环境适应等生物学过程;MSTRG.5393.1可能作为反义lncRNA调控球囊菌的核孔复合体的蛋白合成。
周丁丁, 范元婵, 王杰, 蒋海宾, 祝智威, 范小雪, 陈华枝, 杜宇, 周紫彧, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌中长链非编码RNA的调控作用[J]. 中国农业科学, 2021, 54(1): 224-238.
ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis[J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
表1
本研究使用的引物"
核酸ID Nucleic acid ID | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 产物大小 Product size (bp) |
---|---|---|---|
MSTRG.6443.1 | F | AAAATGAAAAGGCAAATC | 210 |
R | AAGGTCAAGAAGCACAAG | ||
MSTRG.2135.1 | F | AGAAGCAGCAAGGAAGTCG | 128 |
R | GGCAGGGCAATAACAAAAC | ||
MSTRG.2134.1 | F | ACTCACTCTCTGCCCCTC | 238 |
R | CCCATTTATTTGCTACCG | ||
MSTRG.3422.1 | F | AACCGAAAAACTCAAGGA | 160 |
R | TCGCAATCAGACATCAAA | ||
MSTRG.2302.1 | F | TGTCTGTCCGTTCGTCCTT | 139 |
R | CAGCGTAGCGTTGTGTAGT | ||
MSTRG.5023.1 | F | CAAACCCAGATTTATTCC | 110 |
R | TACCTTTCCTCCTTACGA | ||
MSTRG.5584.1 | F | GAAGACATTCAATCCAACAC | 184 |
R | AGCCACACACTTATCCACTA | ||
MSTRG.1870.1 | F | GCCTCTTTTCGGTTTGCT | 158 |
R | CGTTCTTGCTCGTGTCGT | ||
MSTRG.1614.1 | F | AAATCGGAACGGTGAGGGA | 115 |
R | GGCAGTGACCAAAGGCAAA | ||
gene1602 | F | AGCCCCGCTACCAAACTC | 110 |
R | CTGTCCCTCATCGCCATA | ||
gene1970 | F | AGTTCTCTTACTGGCGTCTTTG | 100 |
R | CTTTCACTTGCTGGGCTTTCTC | ||
gene2674 | F | TGGCTTCCTACACAAACCT | 233 |
R | TTCCTTATTCACCCGCTCC | ||
gene4126 | F | ATGAACAATGTCAAGGAAGC | 320 |
R | TCTGGAAAGAGTGTGGGGAG | ||
gene4125 | F | CCAAACAGACAAATGGCTAA | 120 |
R | TCGGGAAAGATGATTGAGAA | ||
gene5384 | F | TATGGTTATGCCTATGGTTT | 122 |
R | GATGTGGGGTATCTCGTGTT | ||
gene1986 | F | CATTGATACCGATACAGAGAC | 237 |
R | GAGATAACATTGACAACGCCT | ||
gene989 | F | CCTCTTCCCACACTCTCACT | 236 |
R | AGACTCCAAAACCTGCTCCT | ||
miR-281-y | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAAAGAGA | 72 |
F | ACACTCCAGCTGGGTGTCATGGAGTTGC | ||
miR-13-y | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCTCATC | 73 |
F | ACACTCCAGCTGGGTATCACAGCCATTTT | ||
miR-11980-y | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCTGCCAA | 68 |
F | ACACTCCAGCTGGGGGGAACGGGC | ||
miR-6057-y | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCATTTGTT | 72 |
F | ACACTCCAGCTGGGTTTGTGACTGTAAC | ||
miR-1-z | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATACATAC | 72 |
F | ACACTCCAGCTGGGTGGAATGTAAAGAA | ||
miR-9-z | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATACAG | 73 |
F | ACACTCCAGCTGGGTCTTTGGTTATCTAG | ||
miR-13-x | L | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCATTCCAC | 72 |
F | ACACTCCAGCTGGGACATCAAATTGGTT | ||
actin (gene6001) | F | GCTACTTCCCATCATTCGTC | 92 |
R | CCCAATCTGTGACAATCCC | ||
- | Universal R | CTCAACTGGTGTCGTGGA |
表2
球囊菌中与lncRNA序列互补靶标的功能注释"
LncRNA ID | LncRNA大小 LncRNA size (bp) | 靶mRNA ID Target mRNA ID | 靶mRNA大小 Target mRNA size (bp) | eggNOG数据库注释 Annotation in eggNOG database |
---|---|---|---|---|
MSTRG.3576.1 | 285 | gene1316 | 1851 | 保守性假定蛋白(土曲霉NIH2624) Conserved hypothetical protein (Aspergillus terreus NIH2624) |
MSTRG.2795.1 | 253 | gene548 | 1407 | — |
MSTRG.1238.1 | 294 | gene1194 | 1569 | 保守性假定蛋白(土曲霉NIH2624) Conserved hypothetical protein (Aspergillus terreus NIH2624) |
MSTRG.5393.1 | 238 | gene3444 | 3831 | 核孔复合体蛋白An-Nup120(皮炎芽生菌ATCC 18188) Nuclear pore complex protein An-Nup120 (Blastomyces dermatitidis ATCC 18188) |
MSTRG.1387.1 | 206 | gene4650 | 3186 | 假定蛋白AN4929.2(构巢曲霉FGSC A4) Hypothetical protein AN4929.2 (Aspergillus nidulans FGSC A4) |
MSTRG.1672.1 | 221 | gene5233 | 7065 | 假定蛋白PABG_05261(巴西副球孢子菌Pb03) Hypothetical protein PABG_05261 (Paracoccidioides brasiliensis Pb03) |
MSTRG.3829.1 | 296 | gene1554 | 3036 | 假定蛋白CIMG_07970(粗球孢子菌RS) Hypothetical protein CIMG_07970 (Coccidioides immitis RS) |
表3
球囊菌ceRNA网络中靶mRNA注释数前12位的KEGG通路"
通路 Pathway | 通路ID Pathway ID | mRNA数 Number of mRNAs | P值 P value |
---|---|---|---|
新陈代谢途径Metabolic pathway | ko01100 | 9 | 0.2834603 |
次生代谢物的生物合成Biosynthesis of secondary metabolite | ko01110 | 4 | 0.3784708 |
自噬-其他真核生物Autophagy-other eukaryote | ko04136 | 3 | 0.0012982 |
线粒体自噬-酵母Mitophagy-yeast | ko04139 | 3 | 0.0059399 |
自噬-酵母Autophagy-yeast | ko04138 | 3 | 0.0165266 |
抗生素生物合成Biosynthesis of antibiotics | ko01130 | 3 | 0.4179210 |
谷胱甘肽代谢Glutathione metabolism | ko00480 | 2 | 0.0271424 |
寿命调节途径-多物种Longevity regulating pathway-multiple species | ko04213 | 2 | 0.0302527 |
内质网蛋白加工Protein processing in endoplasmic reticulum | ko04141 | 2 | 0.1919356 |
减数分裂-酵母Meiosis-yeast | ko04113 | 2 | 0.2092014 |
嘌呤代谢Purine metabolism | ko00230 | 2 | 0.2678463 |
细胞周期-酵母Cell cycle-yeast | ko04111 | 2 | 0.3210316 |
[1] |
MAXFIELD-TAYLOR S A, MUJIC A B, RAO S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE, 2015,10(4):e0124868.
doi: 10.1371/journal.pone.0124868 pmid: 25885679 |
[2] |
FLORES J M, RUIZ J A, RUZ J M, PUERTA F, BUSTOS M, PADIILA F, CAMPANO F. Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie, 1996,27(4):185-192.
doi: 10.1051/apido:19960401 |
[3] |
PUERTA F, FLORES J M, BUSTOS M, PADILLA F, CAMPANO F. Chalkbrood development in honeybee brood under controlled conditions. Apidologie, 1994,25(6):540-546.
doi: 10.1051/apido:19940604 |
[4] |
KOENIG J P, BOUSH G M, ERICKSON E H. Effects of spore introduction and ratio of adult bees to brood on chalkbrood disease in honeybee colonies. Journal of Apicultural Research, 1987,26(3):191-195.
doi: 10.1080/00218839.1987.11100758 |
[5] |
GILLIAM M, TABER III S, LORENZ B J, PREST D B. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. Journal of Invertebrate Pathology, 1988,52(2):314-325.
doi: 10.1016/0022-2011(88)90141-3 |
[6] | 李颖华, 何志义. LncRNA与感染性疾病研究进展. 基础医学与临床, 2016,36(9):1306-1309. |
LI Y H, HE Z Y. Advance of lncRNA in the research on infectious diseases. Basic and Clinical Medicine, 2016,36(9):1306-1309. (in Chinese) | |
[7] |
BATISTA P J, CHANG H Y. Long noncoding RNAs: Cellular address codes in development and disease. Cell, 2013,152(6):1298-1307.
pmid: 23498938 |
[8] |
HUNG T, CHANG H Y. Long noncoding RNA in genome regulation. RNA Biology, 2010,7(5):582-585.
doi: 10.4161/rna.7.5.13216 pmid: 20930520 |
[9] |
YAN P, LUO S, LU J Y, SHEN X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017,46:170-178.
doi: 10.1016/j.gde.2017.07.009 pmid: 28843809 |
[10] |
FAUQUENOY S, MIGEOT V, FINET O, YAGUE-SANZ C, KHOROSJUTINA O, EKWALL K, HERMAND D. Repression of cell differentiation by a cis-acting lincRNA in fission yeast. Current Biology, 2018,28(3):383-391.
doi: 10.1016/j.cub.2017.12.048 pmid: 29395921 |
[11] | 董宪喆, 胡园, 刘屏, 路玉盼. lncRNA作为竞争性内源RNA调控胃癌进程的研究进展. 中国药理学通报, 2016,32(9):1185-1189. |
DONG X Z, HU Y, LIU P, LU Y P. The research progress of lncRNA as ceRNA in gastric cancer. Chinese Pharmacological Bulletin, 2016,32(9):1185-1189. (in Chinese) | |
[12] |
ZHU J, FU H, WU Y, ZHENG X. Function of lncRNAs and approaches to lncRNA-protein interactions. Science China. Life Sciences, 2013,56(10):876-885.
pmid: 24091684 |
[13] | JATHAR S, KUMAR V, SRIVASTAVA J, TRIPATHI V. Technological developments in lncRNA biology//Advances in Experimental Medicine and Biology, 2017,1008:283-323. |
[14] |
VAN WERVEN F J, NEUERT G, HENDRICK N, LARDENOIS A, BURATOWSKI S, VAN OUDENAARDEN A, PRIMIG M, AMON A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell, 2012,150(6):1170-1181.
doi: 10.1016/j.cell.2012.06.049 pmid: 22959267 |
[15] | 杜庆国. 通过转录组测序分析玉米耐受低磷胁迫的分子机制[D]. 北京: 中国农业科学院, 2017. |
DU Q G. Explanation of molecular mechanisms to low phosphorus stress through RNA-seq transcriptome analysis in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[16] |
SHAO J, WANG J, HUANG J, LIU C, PAN Y, GUO Q, ZOU W. Identification of lncRNA expression profiles and ceRNA analysis in the spinal cord of morphine-tolerant rats. Molecular Brain, 2018,11:21.
doi: 10.1186/s13041-018-0365-8 pmid: 29636075 |
[17] |
NIEDERER R O, PAPADOPOULOS N, ZAPPULLA D C. Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq. Scientific Reports, 2016,6:19376.
doi: 10.1038/srep19376 pmid: 26786024 |
[18] | BUMGARNER S L, DOWELL R D, GRISAFI P, GIFFORD D K, FINK G R. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010,106(43):18321-18326. |
[19] |
ARD R, TONG P, ALLSHIRE R C. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nature Communications, 2014,5:5576.
doi: 10.1038/ncomms6576 |
[20] |
QIN X, EVANS J D, ARONSTEIN K A, MURRAY K D, WEINSTOCK G M. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006,15(5):715-718.
doi: 10.1111/j.1365-2583.2006.00694.x pmid: 17069642 |
[21] |
SHANG Y, XIAO G, ZHENG P, CEN K, ZHAN S, WANG C. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016,8(5):1374-1387.
doi: 10.1093/gbe/evw082 pmid: 27071652 |
[22] | 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44. |
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZAHNG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese) | |
[23] | 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411. |
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese) | |
[24] |
郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
doi: 10.13343/j.cnki.wsxb.20160551 |
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20160551 |
|
[25] |
CHEN D F, DU Y, FAN X X, ZHU Z W, JIANG H B, WANG J, FAN Y C, CHEN H Z, ZHOU D D, XIONG C L, ZHENG Y Z, XU X J, LUO Q, GUO R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. Journal of Invertebrate Pathology, 2020,176:107475.
doi: 10.1016/j.jip.2020.107475 pmid: 32976816 |
[26] |
GUO R, CHEN D, XIONG C, HOU C, ZHENG Y, FU Z, DIAO Q, ZHANG L, WANG H, HOU Z, LI W, KUMAR D, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
pmid: 29894727 |
[27] |
郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
doi: 10.13343/j.cnki.wsxb.20170535 |
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170535 |
|
[28] |
周丁丁, 史小玉, 王杰, 范元婵, 祝智威, 蒋海宾, 范小雪, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 东方蜜蜂微孢子虫孢子中长链非编码RNA的竞争性内源RNA调控网络及潜在功能. 中国农业科学, 2020,53(10):2122-2136.
doi: 10.3864/j.issn.0578-1752.2020.10.018 |
ZHOU D D, SHI X Y, WANG J, FAN Y C, ZHU Z W, JIANG H B, FAN X X, XIONG C L, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Investigation of competing endogenous RNA regulatory network and putative function of long non-coding RNAs in Nosema ceranae spore. Scientia Agricultura Sinica, 2020,53(10):2122-2136. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.10.018 |
|
[29] |
LI J, MA W, ZENG P, WANG J, GENG B, YANG J, CUI Q. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics, 2015,16(5):806-812.
doi: 10.1093/bib/bbu048 pmid: 25524864 |
[30] |
郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
doi: 10.3864/j.issn.0578-1752.2018.18.016 |
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F. Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.18.016 |
|
[31] |
BO X, WANG S. TargetFinder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics, 2005,21(8):1401-1402.
doi: 10.1093/bioinformatics/bti211 pmid: 15598838 |
[32] | 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019,59(9):1747-1764. |
DU Y, TONG X Y, ZHOU D D, CHEN D F, XIONG C L, ZHENG Y Z, XU G J, WANG H P, CHEN H Z, GUO Y L, LONG Q, GUO R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019,59(9):1747-1764. (in Chinese) | |
[33] |
SONG Y X, SUN J X, ZHAO J H, YANG Y C, SHI J X, WU Z H, CHEN X W, GAO P, MIAO Z F, WANG Z N. Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nature Communications, 2017,8(1):289.
doi: 10.1038/s41467-017-00304-1 pmid: 28819095 |
[34] |
YANG D, LIAN T, TU J, GAUR U, MAO X, FAN X, LI D, LI Y, YANG M. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction. Aging, 2016,8(9):2182-2197.
doi: 10.18632/aging.101062 pmid: 27687893 |
[35] |
AU P C K, DENNIS E S, WANG M B. Analysis of Argonaute 4-associated long non-coding RNA in Arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation. Genes, 2017,8(8):198.
doi: 10.3390/genes8080198 |
[36] | 熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020,60(5):992-1009. |
XIONG C L, DU Y, FENG R R, JIANG H B, SHI X Y, WANG H P, FAN X X, WANG J, ZHU Z W, FAN Y C, CHEN H Z, ZHOU D D, ZHENG Y Z, CHEN D F, GUO R. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020,60(5):992-1009. (in Chinese) | |
[37] |
CAI B, LI Z, MA M, WANG Z, HAN P, ABDALLA B A, NIE Q, ZHANG X. LncRNA-six1 encodes a micropeptide to activate six1 in cis and is involved in cell proliferation and muscle growth. Frontiers in Physiology, 2017,8:230.
doi: 10.3389/fphys.2017.00230 pmid: 28473774 |
[38] |
FENG D, LI Q, YU H, KONG L, DU S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Scientific Reports, 2018,8(1):1436.
doi: 10.1038/s41598-018-19950-6 pmid: 29362405 |
[39] |
张惠艳, 李艳菊, 顾金刚, 董晓霞, 尚攀. 基于Biolog-FF技术的金霉素降解真菌的碳代谢特征研究. 微生物学通报, 2015,42(7):1241-1247.
doi: 10.13344/j.microbiol.china.140745 |
ZHANG H Y, LI Y J, GU J G, DONG X X, SHANG P. On carbon metabolism of fungi in chlortetracycline degradation based on Biolog-FF system. Microbiology China, 2015,42(7):1241-1247. (in Chinese)
doi: 10.13344/j.microbiol.china.140745 |
|
[40] |
WANG Z H, LIU J M, CHEN L, ZENG A P, SOLEM C, JENSEN P R. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metabolic Engineering, 2018,48:1-12.
doi: 10.1016/j.ymben.2018.05.004 pmid: 29753071 |
[41] | DONIA M S, FRICKE W F, PARTENSKY F, COX J, ELSHAHAWI S I, WHITE J R, PHILLIPPY A M, SCHATZ M C, PIEL J, HAYGOOD M G, RAVEL J, SCHMIDT E W. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(51):E1423-E1432. |
[42] | SOLA-LANDA A, MOURA R S, MARTIN J F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(10):6133-6138. |
[43] |
HUARTE-BONNET C, PAIXÃO F R S, PONCE J C, SANTANA M, PRIETO E D, PEDRINI N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biology, 2018,122(6):457-464.
doi: 10.1016/j.funbio.2017.09.003 pmid: 29801789 |
[44] |
MCNAMARA-BORDEWICK N K, MCKINSTRY M, SNOW J W. Robust transcriptional response to heat shock impacting diverse cellular processes despite lack of heat shock factor in microsporidia. mSphere, 2019,4(3):e00219-19.
doi: 10.1128/mSphere.00219-19 pmid: 31118302 |
[45] |
许彩虹, 赵亚琴, 杨斌盛. 金属离子对金属蛋白结构与功能的调控. 化学进展, 2013,25(4):520-529.
doi: 10.7536/PC121007 |
XU C H, ZHAO Y Q, YANG B S. Mediating roles of metal ions in the structures and functions of metalloproteins. Progress in Chemistry, 2013,25(4):520-529. (in Chinese)
doi: 10.7536/PC121007 |
|
[46] |
CHACKO N, ZHAO Y, YANG E, WANG L, CAI J J, LIN X. The lncRNA RZE1 controls cryptococcal morphological transition. PLoS Genetics, 2015,11(11):e1005692.
doi: 10.1371/journal.pgen.1005692 pmid: 26588844 |
[47] | 谢兆辉. 长非编码RNA在基因表达调节中的作用. 生命的化学, 2010,30(3):345-349. |
XIE Z H. The roles of large noncoding RNAs in gene regulation. Chemistry of Life, 2010,30(3):345-349. (in Chinese) | |
[48] |
SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language?. Cell, 2011,146(3):353-358.
doi: 10.1016/j.cell.2011.07.014 pmid: 21802130 |
[49] |
CHEN D F, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, WAN J Q, XIONG C L, ZHENG Y Z, GUO R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
doi: 10.3390/insects10080245 |
[50] | FONTANESI F, DIAZ F, BARRIENTOS A. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using yeast models of OXPHOS deficiencies. Current Protocols in Human Genetics, 2009,19(5): doi: 10.1002/0471142905.hg1905s63. |
[51] | 范永山, 刘颖超, 谷守芹, 桂秀梅, 董金皋. 植物病原真菌的MAPK基因及其功能. 微生物学报, 2004,44(4):547-551. |
FAN Y S, LIU Y C, GU S Q, GUI X M, DONG J G. Mitogen activated protein kinase genes and its functions in phytopathogenic fungus. Acta Microbiologica Sinica, 2004,44(4):547-551. (in Chinese) |
[1] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[2] | 陈华枝,王杰,祝智威,蒋海宾,范元婵,范小雪,万洁琦,卢家轩,郑燕珍,付中民,徐国钧,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中长链非编码RNA的比较及潜在功能分析[J]. 中国农业科学, 2021, 54(2): 435-448. |
[3] | 王继卿,郝志云,沈继源,柯娜,黄兆春,梁维炜,罗玉柱,胡江,刘秀,李少斌. 小尾寒羊泌乳性状重要lncRNAs的筛选、鉴定及功能分析[J]. 中国农业科学, 2021, 54(14): 3113-3123. |
[4] | 贾海燕,宋丽云,徐翔,解屹,张超群,刘天波,赵存孝,申莉莉,王杰,李莹,王凤龙,杨金广. 不同温度下TMV侵染枯斑三生烟的LncRNA差异表达[J]. 中国农业科学, 2020, 53(7): 1381-1396. |
[5] | 陈华枝,祝智威,蒋海宾,王杰,范元婵,范小雪,万洁琦,卢家轩,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析[J]. 中国农业科学, 2020, 53(17): 3606-3619. |
[6] | 杜宇,范小雪,蒋海宾,王杰,范元婵,祝智威,周丁丁,万洁琦,卢家轩,熊翠玲,郑燕珍,陈大福,郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用[J]. 中国农业科学, 2020, 53(12): 2512-2526. |
[7] | 周丁丁,史小玉,王杰,范元婵,祝智威,蒋海宾,范小雪,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿. 东方蜜蜂微孢子虫孢子中长链非编码RNA的竞争性内源RNA调控网络及潜在功能[J]. 中国农业科学, 2020, 53(10): 2122-2136. |
[8] | 杜宇,周丁丁,万洁琦,卢家轩,范小雪,范元婵,陈恒,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿. 意大利蜜蜂工蜂中肠发育过程中的差异基因 表达谱及调控网络[J]. 中国农业科学, 2020, 53(1): 201-212. |
[9] | 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的 差异表达分析[J]. 中国农业科学, 2018, 51(18): 3600-3613. |
[10] | 曹雄军,卢晓鹏,熊江,李静,谢深喜. 枳NLP转录因子响应干旱胁迫并与NRE顺式作用元件互作[J]. 中国农业科学, 2018, 51(17): 3370-3378. |
[11] | 席伟军,李江红,陈大福,梁勤. 环介导等温扩增(LAMP)技术检测蜜蜂球囊菌[J]. 中国农业科学, 2016, 49(4): 765-774. |
[12] | 李江红, 郑志阳, 洪双燕, 齐香凤, 梁勤. 蜜蜂患白垩病虫体内一株球囊菌拮抗细菌的分离与鉴定[J]. 中国农业科学, 2012, 45(5): 973-980. |
[13] | . 两种水稻OsRhoGDIs基因启动子的克隆及分析[J]. 中国农业科学, 2008, 41(10): 2916-2922 . |
|