中国农业科学 ›› 2020, Vol. 53 ›› Issue (9): 1845-1859.doi: 10.3864/j.issn.0578-1752.2020.09.012
收稿日期:
2019-07-01
接受日期:
2019-10-21
出版日期:
2020-05-01
发布日期:
2020-05-13
通讯作者:
史东梅
作者简介:
江娜,E-mail:m18725617837@163.com。
基金资助:
Na JIANG1,DongMei SHI1(),GuangYi JIANG2,Ge SONG1,ChengJing SI3,Qing YE1
Received:
2019-07-01
Accepted:
2019-10-21
Online:
2020-05-01
Published:
2020-05-13
Contact:
DongMei SHI
摘要:
【目的】紫色土坡耕地是南方丘陵区农业生产重要的耕地资源,其耕层土壤退化主要为物理退化。为了探讨土壤侵蚀对紫色土坡耕地耕层物理特性及力学特性退化的影响,在耕层土壤退化分级的基础上,定量分析了不同侵蚀程度下紫色土坡耕地耕层物理、力学特性及土壤退化指数的变化特征。【方法】采用铲土侵蚀模拟试验方法,以未侵蚀地块为对照组(CK),对比分析了侵蚀5 cm(S-5)、10 cm(S-10)、15 cm(S-15)、20 cm(S-20)条件下紫色土坡耕地耕层土壤渗透性、土壤力学特性及土壤退化指数变化特征,对坡耕地耕层物理、力学特性的退化程度进行了定量分析。【结果】(1)紫色土坡耕地不同侵蚀程度下耕层土壤渗透性为CK>S-5>S-10>S-15>S-20,土壤初始入渗率、稳定入渗率、平均入渗率、饱和导水率随着侵蚀程度加剧而降低,S-20土壤渗透性能最差;不同侵蚀程度下紫色土坡耕地均表现为0—20 cm土层的土壤渗透性指标高于20—40 cm土层的。(2)紫色土坡耕地不同侵蚀程度耕层土壤力学性质为CK-5-10-15-20,土壤抗剪强度、土壤紧实度随侵蚀程度加剧而增加。不同侵蚀程度下紫色土坡耕地各层土壤力学指标均表现为0—20 cm土层的高于20—40 cm土层的。(3)土壤抗剪强度对第一轴贡献率最大,土壤抗剪强度是影响不同侵蚀程度下紫色土坡耕地土壤物理性质及力学特性变化的主要因素。紫色土坡耕地土壤物理性质及力学特性与第一轴相关性排序表现为稳定入渗率>土壤紧实度>饱和导水率>平均入渗率>初始入渗率>抗剪强度。(4)不同侵蚀程度下紫色土坡耕地土壤退化指数大小为S-5(-8.71%)>S-10(-10.95%)>S-20(-12.17%)>S-15(-15.37%),S-15处理对耕层物理性质影响最大,S-15 土壤退化指数最小,土壤退化程度为重度退化。不同侵蚀条件下,紫色土坡耕地土壤退化指数10—20 cm土层的最大,土壤退化对10—20 cm土层影响最小。【结论】紫色土坡耕地土壤退化现象严重,不同侵蚀程度土壤的退化等级分为4级,分别为未退化、轻度退化、中度退化、重度退化。研究结果可为坡耕地耕层质量退化过程辨识及恢复调控提供技术参数。
江娜,史东梅,蒋光毅,宋鸽,司承静,叶青. 土壤侵蚀对紫色土坡耕地耕层物理及力学特性的影响[J]. 中国农业科学, 2020, 53(9): 1845-1859.
Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland[J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
表1
不同侵蚀程度下坡耕地原位模拟小区的原始土层剩余厚度"
原始不同土层(hi) Original different soil layers (cm) | 模拟侵蚀深度/模拟侵蚀年限Simulated erosion depth (cm)/Simulated erosion age (a) | ||||
---|---|---|---|---|---|
0/0 | 5/20 | 10/40 | 15/60 | 20/80 | |
S-0 | S-5 | S-10 | S-15 | S-20 | |
0-20 | 20 | 15.55 | 12.09 | 9.40 | 5.50 |
20-25 | - | 4.45 | 3.46 | 2.69 | 3.90 |
25-30 | - | - | 4.45 | 3.46 | 2.69 |
30-35 | - | - | - | 4.45 | 3.46 |
35-40 | - | - | - | - | 4.45 |
表2
不同侵蚀程度下耕层土壤渗透性能主成分分析"
主成分 Principal component | Norm值 Norm value | ||
---|---|---|---|
F1 | F2 | ||
X1饱和导水率Saturated hydraulic conductivity | 0.021 | 0.997 | 1.02 |
X2初始入渗率Initial soil infiltration | 0.978 | 0.125 | 1.64 |
X3稳定入渗率Stable infiltration rate | 0.939 | -0.161 | 1.58 |
X4平均入渗率Average infiltration ratio | 0.982 | 0.008 | 1.64 |
主成分特征值Principal component eigenvalue | 2.802 | 1.036 | - |
主要方差贡献率Contribution rate of major variance | 70.06 | 25.91 | - |
主要成分累积贡献率Cumulative contribution rate of major components | 70.06 | 95.97 | - |
表3
不同侵蚀程度下耕层土壤渗透性能排序"
处理 Manage | 0-10 cm | 10-20 cm | 20-30 cm | 30-40 cm | 平均得分 The average score | 排序 The sorting | 退化程度 Degradation | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
得分 Score | 排序 The sorting | 得分 Score | 排序 The sorting | 得分 Score | 排序 The sorting | 得分 Score | 排序 The sorting | ||||
CK | 3.06 | 1.00 | 1.23 | 1.00 | 0.50 | 2.00 | 0.25 | 2.00 | 1.26 | 1 | 未退化 Non degradation |
S-5 | 1.53 | 1.00 | 0.90 | 2.00 | -0.07 | 3.00 | -0.78 | 3.00 | 0.40 | 2 | 轻度退化 Mild degradation |
S-10 | 0.72 | 2.00 | 0.38 | 2.00 | 0.05 | 2.00 | -0.74 | 3.00 | 0.10 | 2 | 轻度退化 Mild degradation |
S-15 | 0.19 | 2.00 | -0.13 | 3.00 | -1.25 | 4.00 | -1.64 | 4.00 | -0.71 | 3 | 中度退化 Moderate degradation |
S-20 | 0.06 | 2.00 | -0.41 | 3.00 | -1.59 | 4.00 | -2.08 | 4.00 | -1.01 | 4 | 重度退化 Severe degradation |
表4
坡耕地土壤物理性质相关性分析"
土壤容重 Soil bulk density | 土壤总 孔隙度 Soil total porosity | 毛管孔 隙度 Soil capillary porosity | 砂粒Sand | 粉粒 Silt | 黏粒 Clay | 饱和导 水率 Saturated hydraulic conductivity | 初始入 渗率 Initial soil infiltration | 平均 入渗率 Average infiltration rate | 稳定入 渗率 Stable infiltration rate | 抗剪强度 Soil shear strength | 土壤紧 实度 Soil compactibility | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | 1 | |||||||||||
Z2 | -1.000** | 1 | ||||||||||
Z3 | -0.696** | 0.698** | 1 | |||||||||
Z4 | 0.655** | -0.655** | -0.517* | 1 | ||||||||
Z5 | -0.770** | 0.770** | 0.549* | -0.978** | 1 | |||||||
Z6 | 0.880** | -0.881** | -0.741** | 0.429 | -0.561* | 1 | ||||||
X1 | -0.859** | 0.858** | 0.697** | -0.774** | 0.841** | -0.824** | 1 | |||||
X2 | -0.924** | 0.923** | 0.763** | -0.709** | 0.789** | -0.873** | 0.947** | 1 | ||||
X3 | -0.750** | 0.749** | 0.595** | -0.814** | 0.843** | -0.614** | 0.853** | 0.857** | 1 | |||
X4 | -0.935** | 0.934** | 0.788** | -0.684** | 0.766** | -0.865** | 0.909** | 0.973** | 0.872** | 1 | ||
Y5 | 0.889** | -0.890** | -0.696** | 0.435 | -0.572** | 0.991** | -0.840** | -0.889** | -0.644** | -0.876** | 1 | |
Y6 | 0.769** | -0.770** | -0.968** | 0.547* | -0.606** | 0.840** | -0.758** | -0.825** | -0.668** | -0.841** | 0.807** | 1 |
图4
不同侵蚀程度下耕层土壤物理性质排序图 SHC:饱和导水率Saturated hydraulic conductivity;SS:抗剪强度Soil shear strength;SC:土壤紧实度 Soil compactibility;SIR:初始入渗率Initial soil infiltration;SR:稳定入渗率Stable infiltration rate;AR:平均入渗率Average infiltration rate;G:砂粒Sand;P:粉粒 Silt;C:黏粒Clay;BD:土壤容重Soil bulk density;pT:土壤总孔隙度Soil total porosity;P:土壤毛管孔隙度Soil capillary porosity"
表5
不同侵蚀程度下紫色土坡耕地耕层土壤物理性质排序统计结果"
Axis 1 | Axis 2 | Axis 3 | Axis 4 | |
---|---|---|---|---|
特征值Eigenvalue | 0.0023 | 0.0004 | 0.0003 | 0 |
解释变异(累计)Explained variation (cumulative) | 73.50 | 86.03 | 94.57 | 94.85 |
Pseudo-canonical相关性Pseudo-canonical correlation | 0.9950 | 0.9847 | 0.8347 | 0.7174 |
解释拟合变异(累积)Explained fitted variation (cumulative) | 77.48 | 90.70 | 99.70 | 100.00 |
表6
紫色土坡耕地耕层土壤退化指标统计分析特征"
评价指标 Evaluation index | 初始 入渗率 Initial soil infiltration (mm·min-1) | 稳定入渗率 Stable infiltration rate (mm·min-1) | 平均入渗率 Average infiltration rate (mm·min-1) | 饱和导水率 Saturated hydraulic conductivity (mm·min-1) | 抗剪强度 Soil shear strength (kPa) | 土壤紧实度 Soil compactibility (N·cm2) | 土壤 容重 Soil bulk density (g·cm-3) | 土壤总 孔隙度 Soil total porosity (%) | 毛管孔隙度 Soil capillary porosity (%) | 粉粒 Silt (%) | 砂粒 Sand (%) | 黏粒 Clay (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 Maximum value | 70.75 | 13.29 | 39.29 | 4.00 | 3.84 | 251.50 | 1.58 | 52.33 | 36.29 | 66.67 | 36.77 | 32.33 |
最小值 Minimum value | 13.00 | 8.42 | 16.00 | 0.25 | 1.96 | 49.98 | 1.26 | 40.38 | 7.95 | 49.00 | 16.67 | 14.33 |
平均值 Average value | 37.79 | 10.30 | 27.04 | 1.86 | 2.97 | 96.06 | 1.43 | 46.19 | 30.58 | 55.39 | 29.62 | 22.9 |
标准差 Standard deviation | 13.92 | 1.31 | 5.75 | 1.17 | 0.61 | 46.25 | 0.10 | 3.91 | 6.29 | 4.61 | 5.03 | 5.81 |
变异系数 Coefficient of variation (%) | 36.84 | 12.71 | 21.27 | 63.03 | 20.56 | 48.15 | 7.31 | 8.47 | 20.56 | 8.31 | 17.00 | 25.37 |
峰度Kurtosis | 0.46 | 0.02 | -0.12 | -0.83 | -1.27 | 6.09 | -1.38 | -1.39 | 8.87 | 0.41 | 0.89 | -1.26 |
偏度Skewness | 0.43 | 0.60 | 0.03 | 0.15 | -0.2 | 2.09 | 0.13 | -0.13 | -2.74 | 0.69 | -0.74 | 0.06 |
K-S检验 K-S test | 0.20 | 0.20 | 0.20 | 0.11 | 0.20 | 0.08 | 0.15 | 0.14 | 0.22 | 0.20 | 0.20 | 0.20 |
Norm值 Norm value | 3.04 | 2.70 | 3.03 | 2.94 | 2.81 | 2.73 | 2.94 | 2.94 | 2.53 | 2.44 | 2.66 | 2.80 |
[1] | 中国科学院成都分院土壤研究室. 中国紫色土(Ⅰ). 北京: 科学出版社, 1991. |
Department of Soil Research, Chengdu Branch, Chinese Academy of Sciences. Purple Soil of China(I). Beijing: Science Press, 1991. (in Chinese) | |
[2] |
WANG S S, SUN B X, LI C D, LI Z B, MA B . Runoff and soil erosion on slope cropland: A review. Journal of Resources and Ecology, 2018,9(5):461-470.
doi: 10.5814/j.issn.1674-764x.2018.05.002 |
[3] | 韩晓增, 邹文秀, 陆欣春, 段景海 . 旱作土壤耕层及其肥力培育途径. 土壤与作物, 2015,4(4):145-150. |
HAN X Z, ZOU X W, LU X C, DUANG J H . The soil cultivated layer in dryland and technical patterns in cultivating soil fertility. Soil and Crop, 2015,4(4):145-150. (in Chinese) | |
[4] | 苏正安, 张建辉, 聂小军 . 紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应. 农业工程学报, 2009,25(5):54-60. |
SU Z A, ZHANG J H, NIE X J . Response of spatial variability of soil physical properties to soil erosion in purple soil slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(5):54-60. (in Chinese) | |
[5] | 黄少燕, 查轩 . 坡耕地侵蚀过程与土壤理化特性演变. 山地学报, 2002,20(3):290-295. |
HUANG S Y, CHA X . Study on soil erosion process and evolution of soil physicochemisty characteristics on sloping farmland. Journal of Mountain Research, 2002,20(3):290-295. (in Chinese) | |
[6] | 葛方龙, 张建辉, 苏正安, 聂小军 . 坡耕地紫色土养分空间变异对土壤侵蚀的响应. 生态学报, 2007(2):459-464. |
GE F L, ZHANG J H, SU Z A, NIE X J . Response of changes in soil nutrients to soil erosion on a purple soil of cultivated sloping land. Acta Ecologica Sinica, 2007(2):459-464. (in Chinese) | |
[7] | 史德明, 韦启潘 . 中国南方侵蚀土壤退化指标体系研究. 水土保持学报, 2000,14(3):1-9. |
SHI D M, WEI Q P . Research on index system of eroded soil degradation in southern China. Journal of Soil and Water Conservation, 2000,14(3):1-9. (in Chinese) | |
[8] | 史东梅, 蒋光毅, 蒋平, 娄义宝, 丁文斌, 金慧芳 . 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响. 农业工程学报, 2017,33(13):270-279. |
SHI D M, JIANG G Y, JIANG P, LOU Y B, DING W B, JIN H F . Effects of soil erosion factors cultivated-layer quality of slope farmland in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(13):270-279. (in Chinese) | |
[9] | LARNEY F J, JANZEN H H, OLSON B M, WAYNE L C . Soil quality and productivity responses to simulated erosion and restorative amendments. Canadian Journal of Soil Science, 2000,80(3):515-522. |
[10] | OYEDELE D J, AINA P O . Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Plant & Soil, 2006,284(1/2):375-384. |
[11] | 刘慧, 魏永霞 . 黑土区土壤侵蚀厚度对土地生产力的影响及其评价. 农业工程学报, 2014,30(20):288-296. |
LIU H, WEI Y X . Influence of soil erosion thickness on soil productivity of black soil and its evaluation. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(20):288-296. (in Chinese) | |
[12] | 张瑞, 苟晓敏, 赵玉珍, 王志强 . 东北黑土区土壤侵蚀对土壤持水性的影响. 水土保持学报, 2015,29(1):62-65. |
ZHANG R, GOU X M, ZHAO Y Z, WANG Z Q . Effects of soil erosion on soil water retention in black soil region of Northeast China. Journal of Soil and Water Conservation, 2015,29(1):62-65. (in Chinese) | |
[13] | 陈奇伯, 王克勤, 李金洪, 朱国进, 李跃 . 元谋干热河谷坡耕地土壤侵蚀造成的土地退化. 山地学报, 2004,22(5):528-532. |
CHEN Q B, WANG K Q, LI J H, ZHU G J, LI Y . Land degradation caused by soil erosion in slope farmland in dry-hot of Yuanmou county. Journal of Mountain Science, 2004,22(5):528-532. (in Chinese) | |
[14] | 成婧, 吴发启, 王健, 云峰, 吴光艳, 于晓玲 . 渭北旱塬不同程度土壤侵蚀及生产力恢复试验. 中国水土保持科学, 2013,11(2):19-24. |
CHENG J, WU F Q, WANG J, YUN F, WU G Y, YU X L . Effects of soil erosion of different degrees on soil productivity and recovery in Weibei Dryland. Science of Soil and Water Conservation, 2013,11(2):19-24. (in Chinese) | |
[15] |
LIU J X, TU S H, GUO Y Z, JIA Q H . Effect of soil erosion on productivity of sloping field in Mico-plot experiment. Agricultural Science & Technology, 2013,14(1):127-130.
doi: 10.13227/j.hjkx.201703025 pmid: 29965201 |
[16] |
ZHENG S U, ZHANG J H, NIE X J . Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 2010,20(6):740-746.
doi: 10.1002/(sici)1097-4598(199706)20:6<740::aid-mus12>3.0.co;2-y pmid: 9149082 |
[17] | 王志强, 刘宝元, 王旭艳, 高晓飞, 刘刚 . 东北黑土区土壤侵蚀对土地生产力影响试验研究. 中国科学: 地球科学, 2009(10):1397-1412. |
WANG Z Q, LIU B Y, WANG X Y, GAO X F, LIU G . Experimental study on the effect of soil erosion on land productivity in black soil region of Northeast China. Science in China: Earth Science, 2009(10):1397-1412. (in Chinese) | |
[18] | 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定方法. 北京: 科学出版社, 1978: 140-148. |
Department of Soil Physics, Institute of Soil Science, Chinese Academy of Sciences. Method for Determination of Soil Physical Properties. Beijing: Science Press, 1978:140-148. (in Chinese) | |
[19] |
ADEJUWON J O, EKANADE O . A comparison of soil properties under different land use types in a part of the Nigerian cocoa belt. Catena, 1988,15(3):319-331.
doi: 10.1016/0341-8162(88)90054-9 |
[20] |
SHIRAZI M A, HART J W, BOERSMA L . A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Science Society of America Journal, 1988,52(1):181.
doi: 10.2136/sssaj1988.03615995005200010032x |
[21] | 金慧芳, 史东梅, 陈正发, 刘益军, 娄义宝, 杨旭 . 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标. 农业工程学报, 2018,34(7):155-164. |
JIN H F, SHI D M, CHEN Z F, LIU Y J, LOU Y B, YANG X . Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(7):155-164. (in Chinese) | |
[22] |
许明祥, 刘国彬, 赵允格 . 黄土丘陵区土壤质量评价指标研究. 应用生态学报, 2005,16(10):1843-1848.
pmid: 16425459 |
XU M X, LIU G B, ZHAO Y G . Assessment indicators of soil quality in hilly Loess Plateau. Chinese Journal of Applied Ecology, 2005,16(10):1843-1848. (in Chinese)
pmid: 16425459 |
|
[23] | XU M, LI Q, WILSON G . Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China. Soil & Tillage Research, 2016,155:9-18. |
[24] |
MA W M, ZHANG X C . Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. Journal of Arid Land, 2016,8(3):331-340.
doi: 10.1007/s40333-016-0122-8 |
[25] | 林芳, 朱兆龙, 曾全超, 安韶山 . 延河流域三种土壤可蚀性K值估算方法比较. 土壤学报, 2017,54(5):1136-1146. |
LIN F, ZHU Z L, ZENG Q C, AN S S . Comparative study of three different methods for estimation of soil erodibility K in Yanhe Watershed of China. Acta Pedologica Sinica, 2017,54(5):1136-1146. (in Chinese) | |
[26] | 周宁, 李超, 琚存勇, 马亚怀 . 黑龙江省土壤可蚀性K值特征分析. 农业工程学报, 2015,31(10):182-189. |
ZHOU N, LI C, QU C Y, MA Y H . Analysis of K-value characteristics of soil erodibility in Heilongjiang Province. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(10):182-189. (in Chinese) | |
[27] |
ZHANG K, LI L, ZHANG Z . Reliability of soil erodibility estimation in areas outside the US: A comparison of erodibility for main agricultural soils in the US and China. Environmental Earth Sciences, 2016,75(3):252.
doi: 10.1007/s12665-015-4980-8 |
[28] | 张慧利, 蔡洁, 夏显力 . 水土流失治理效益与生态农业发展的耦合协调性分析. 农业工程学报, 2018,34(8):162-169. |
ZHANG H L, CAI J, XIA X L . Coupling coordinative degree analysis on benefit of water and soil erosion control and development of ecological agriculture. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(8):162-169. (in Chinese) | |
[29] | 潘剑君, Ir. E. Bergsma. . 利用土壤入渗速率和土壤抗剪力确定土壤侵蚀等级. 水土保持学报, 1995(2):93-96. |
PAN J. Bergsma E . Determination of soil erosion grade using soil infiltration rate and soil shear resistance. Journal of Soil and Water Conservation, 1995(2):93-96. (in Chinese) | |
[30] | 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 . 容重对土壤水分入渗能力影响模拟试验. 农业工程学报, 2009,25(6):40-45. |
LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H . Simulated experiment on effect of soil bulk density on soil infiltration capacity. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(6):40-45. (in Chinese) | |
[31] | 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 . 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010,47(4):611-620. |
LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H . Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010,47(4):611-620. (in Chinese) | |
[32] | WANG G Q, WU B, ZHANG L, JIANG H, XU Z X . Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. Journal of Hydrology, 2014,514:180-191. |
[1] | 娄义宝,康宏亮,王文龙,沙小燕,冯兰茜,聂慧莹,史倩华. 黄土高原沟壑区沟头植被根系垂直分布及其对土壤抗侵蚀性的影响[J]. 中国农业科学, 2023, 56(1): 90-103. |
[2] | 邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542. |
[3] | 宋鸽,史东梅,蒋光毅,江娜,叶青,张健乐. 土壤管理措施对坡耕地侵蚀退化耕层的恢复作用[J]. 中国农业科学, 2021, 54(8): 1702-1714. |
[4] | 任嘉欣,刘京,陈轩敬,张跃强,张勇,王洁,石孝均. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601-4610. |
[5] | 姚一文,戴全厚,甘艺贤,高儒学,严友进,王玉红. 雨强和地下孔(裂)隙度对喀斯特坡耕地养分流失的影响[J]. 中国农业科学, 2021, 54(1): 140-151. |
[6] | 宋鸽,史东梅,曾小英,蒋光毅,江娜,叶青. 紫色土坡耕地耕层质量障碍特征[J]. 中国农业科学, 2020, 53(7): 1397-1410. |
[7] | 娄义宝,史东梅,金慧芳,蒋光毅,段腾,江娜. 西南紫色土坡耕地农作物-耕层质量适宜性的耦合度诊断[J]. 中国农业科学, 2019, 52(4): 661-675. |
[8] | 孙仕军,朱振闯,陈志君,杨丹,张旭东. 不同颜色地膜和种植密度对春玉米田间地温、耗水及产量的影响[J]. 中国农业科学, 2019, 52(19): 3323-3336. |
[9] | 程永毅,李忠意,白颖艳,刘莉. 电渗析法研究紫色土、黄壤和砖红壤的酸化特征[J]. 中国农业科学, 2018, 51(7): 1325-1333. |
[10] | 冯小杰,郑子成,李廷轩,范丽. 暴雨条件下紫色土区玉米季坡耕地氮素流失特征[J]. 中国农业科学, 2018, 51(4): 738-749. |
[11] | 黄容,高明,黎嘉成,徐国鑫,王富华,李娇,陈仕奇. 有机物料等氮量施用对紫色土氮形态及温室气体排放的影响[J]. 中国农业科学, 2018, 51(21): 4087-4101. |
[12] | 王珂, 徐春丽, 张宇亭, 郑志斌, 王定勇, 石孝均. 长期不同施肥下紫色土-作物体系镉累积及安全性评估[J]. 中国农业科学, 2018, 51(18): 3542-3550. |
[13] | 成艳红,黄欠如,武琳,黄尚书,钟义军,孙永明,张昆,章新亮. 稻草覆盖和香根草篱对红壤坡耕地土壤酶活性和微生物群落结构的影响[J]. 中国农业科学, 2017, 50(23): 4602-4612. |
[14] | 赵乾旭,史静,夏运生,张乃明,宁东卫,岳献荣,杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响[J]. 中国农业科学, 2017, 50(14): 2696-2705. |
[15] | 肖继兵,孙占祥,蒋春光,郑家明,刘 洋,杨 宁,冯良山,白 伟. 辽西地区坡耕地垄膜沟种对土壤侵蚀和作物产量的影响[J]. 中国农业科学, 2016, 49(20): 3904-3917. |
|