中国农业科学 ›› 2021, Vol. 54 ›› Issue (1): 140-151.doi: 10.3864/j.issn.0578-1752.2021.01.010
收稿日期:
2020-04-20
接受日期:
2020-09-02
出版日期:
2021-01-01
发布日期:
2021-01-13
通讯作者:
戴全厚
作者简介:
姚一文,E-mail: 基金资助:
YAO YiWen(),DAI QuanHou(),GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong
Received:
2020-04-20
Accepted:
2020-09-02
Online:
2021-01-01
Published:
2021-01-13
Contact:
QuanHou DAI
摘要:
【目的】研究不同降雨强度和地下孔(裂)隙下,喀斯特区坡耕地表和地下土壤养分流失途径及流失规律,为喀斯特坡耕地土壤养分流失控制和农业面源污染防治提供理论依据。【方法】以喀斯特区坡度为15°的坡耕地为研究对象,通过模拟其地表形态和地下孔(裂)隙特征,设置不同雨强(30、50、70、90 mm·h-1)和地下孔(裂)隙度(1%、3%、5%)交叉试验共36场降雨,探索喀斯特坡耕地地表和地下养分流失特征。【结果】(1)雨强对喀斯特区坡耕地产流产沙影响显著(P<0.05),地表、地下产流产沙量随雨强增大而增加,其产流产沙从地下过渡到地上的临界雨强可能在30—50 mm·h-1;随地下孔(裂)隙度增大,地下产流产沙量增加,地表呈相反的规律。(2)喀斯特坡耕地径流养分主要通过地表流失,小雨强下通过地下孔(裂)隙流失;径流中全氮(TN)、全磷(TP)、全钾(TK)流失量和流失模数均随雨强增大而上升,雨强对各径流养分流失浓度影响不明显。地表养分流失量和流失模数随地下孔(裂)隙度增加而下降,地下反之。地下孔(裂)隙度的增加使地下径流养分流失占比逐渐增加。(3)养分会通过附着于泥沙流失,其中以地表泥沙流失为主。地表、地下各泥沙养分平均流失浓度、流失量和流失模数均随降雨强度增大而增加,其中TK流失平均浓度和流失量在不同雨强下显著高于TN和TP。同雨强下,地表泥沙各养分平均流失浓度、流失量和流失模数随孔(裂)隙度增加呈减小趋势,地下反之,但流失量从地表为主到地表与地下二者并重。(4)相关性分析表明,降雨强度与径流和泥沙流失量均呈现显著正相关关系,雨强对各养分径流的影响高于泥沙,地表径流受雨强影响最大。地下孔(裂)隙度对泥沙养分流失量的影响高于径流,而泥沙养分中地下泥沙养分流失量受其影响较大。【结论】喀斯特坡耕地养分主要通过地表流失,但地下孔(裂)隙对养分流失的影响不容忽视。在坡耕地养分流失防治上,地表通过增加植被覆盖度和添加枯落物等方式减缓坡耕地产流产沙量,地下通过植被根系固定土壤,防止养分通过孔(裂)隙向地下渗漏进而达到减少坡耕地土壤养分流失。
姚一文,戴全厚,甘艺贤,高儒学,严友进,王玉红. 雨强和地下孔(裂)隙度对喀斯特坡耕地养分流失的影响[J]. 中国农业科学, 2021, 54(1): 140-151.
YAO YiWen,DAI QuanHou,GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong. Effects of Rainfall Intensity and Underground Hole (Fracture) Gap on Nutrient Loss in Karst Sloping Farmland[J]. Scientia Agricultura Sinica, 2021, 54(1): 140-151.
表2
喀斯特坡耕地产流产沙量特征"
指标 Index | 孔(裂)隙度 Fissure porosity (%) | 地表Surface | 地下Underground | ||||||
---|---|---|---|---|---|---|---|---|---|
30 mm·h-1 | 50 mm·h-1 | 70 mm·h-1 | 90 mm·h-1 | 30 mm·h-1 | 50 mm·h-1 | 70 mm·h-1 | 90 mm·h-1 | ||
产流量Runoff yield | 1 | 0 | 59.15±3.57Ac | 88.35±4.42Ab | 111.24±5.56Aa | 27.78±1.67Cd | 36.63±1.83Bc | 49.26±2.46Bb | 56.06±3.38Ba |
3 | 0 | 58.74±3.54Ac | 69.18±3.46Bb | 84.59±4.23Ba | 34.55±2.08Bd | 41.15±2.06Bc | 47.66±2.38Bb | 62.46±3.77Ba | |
5 | 0 | 26.23±1.58Bc | 46.76±2.34Cb | 52.76±2.64Ca | 53.62±3.32Ad | 65.52±3.28Ac | 104.49±5.22Ab | 135.21±6.76Aa | |
产沙量Sediment yield | 1 | 0 | 32.84±1.98Ab | 47.31±2.37Aa | 48.93±2.45Aa | 4.84±0.29Bd | 6.31±0.32Bc | 7.82±0.39Ba | 7.08±0.43Cb |
3 | 0 | 16.56±1.00Bc | 24.22±1.21Bb | 41.61±2.08Ba | 5.02±0.30Bd | 6.85±0.34Bc | 8.45±0.42Bb | 11.73±0.71Ba | |
5 | 0 | 7.77±0.47Cc | 17.14±0.86Cb | 28.21±1.41Ca | 7.39±0.45Ad | 11.90±0.59Ac | 20.19±1.01Ab | 34.89±2.10Aa |
表3
不同雨强下地表、地下径流养分流失状况"
养分 Nutrient | 降雨强度 Rainfall intensity (mm·h-1) | 地表径流Surface runoff | 地下径流Underground runoff | 地下流失比 Underground loss ratio (%) | ||||
---|---|---|---|---|---|---|---|---|
平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | 平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | |||
全氮 TN | 30 | 0 | 0 | 0 | 2.00 | 55.98c | 19.32 | 100.00 |
50 | 2.76 | 160.44c | 55.37 | 1.98 | 71.84b | 24.79 | 30.93 | |
70 | 2.51 | 219.18b | 75.64 | 2.01 | 92.23a | 31.83 | 29.62 | |
90 | 2.51 | 276.06a | 95.27 | 1.69 | 97.24a | 33.56 | 26.05 | |
全磷 TP | 30 | 0 | 0 | 0 | 0.11 | 2.56c | 0.88 | 100.00 |
50 | 0.39 | 14.90b | 5.14 | 0.21 | 7.88b | 2.72 | 34.59 | |
70 | 0.20 | 23.30a | 8.04 | 0.19 | 9.03a | 3.12 | 27.93 | |
90 | 0.23 | 23.75a | 8.20 | 0.14 | 7.46b | 2.57 | 23.90 | |
全钾 TK | 30 | 0 | 0 | 0 | 0.22 | 5.28d | 1.82 | 100.00 |
50 | 0.44 | 26.12c | 9.01 | 0.21 | 7.19c | 2.48 | 21.59 | |
70 | 0.43 | 35.59b | 12.28 | 0.23 | 11.47b | 3.96 | 24.37 | |
90 | 0.41 | 47.58a | 16.42 | 0.23 | 12.99a | 4.48 | 21.45 |
表4
地下孔(裂)隙度下地表、地下径流养分流失状况"
养分 Nutrient | 孔(裂)隙度 Fissure porosity (%) | 地表径流Surface runoff | 地下径流Underground runoff | 地下流失比 Underground loss ratio (%) | ||||
---|---|---|---|---|---|---|---|---|
平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | 平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | |||
全氮 TN | 1 | 2.51b | 276.06a | 95.27 | 1.69 | 92.23c | 31.83 | 25.04 |
3 | 3.18a | 272.52a | 94.05 | 2.55 | 157.82b | 54.46 | 36.67 | |
5 | 2.47c | 129.51b | 44.69 | 2.18 | 293.77a | 101.38 | 69.40 | |
全磷 TP | 1 | 0.23a | 23.75a | 8.20 | 0.14 | 7.46c | 2.57 | 23.90 |
3 | 0.24a | 20.76a | 7.16 | 0.19 | 11.50b | 3.97 | 35.64 | |
5 | 0.19b | 9.91b | 3.42 | 0.25 | 32.11a | 11.08 | 76.42 | |
全钾 TK | 1 | 0.43c | 47.58a | 16.42 | 0.23 | 12.99c | 4.48 | 21.44 |
3 | 0.58b | 45.69a | 15.77 | 0.34 | 20.97b | 7.24 | 31.46 | |
5 | 0.63a | 32.86b | 11.34 | 0.37 | 48.84a | 16.85 | 59.78 |
表5
不同雨强下地表、地下泥沙养分流失状况"
养分 Nutrient | 降雨强度 Rainfall intensity (mm·h-1) | 地表泥沙Surface sediment | 地下泥沙Underground sediment | 地下流失比 Underground loss ratio (%) | ||||
---|---|---|---|---|---|---|---|---|
平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | 平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | |||
全氮 TN | 30 | 0.00 | 0.00 | 0.00 | 1.21c | 0.59c | 0.20 | 100.00 |
50 | 1.26c | 4.12b | 1.42 | 1.41b | 0.90b | 0.31 | 17.85 | |
70 | 1.48b | 7.46a | 2.58 | 1.42b | 1.10b | 0.38 | 12.83 | |
90 | 1.66a | 7.48a | 2.58 | 1.72a | 1.22a | 0.42 | 14.05 | |
全磷 TP | 30 | 0.00 | 0.00 | 0.00 | 1.83a | 0.89b | 0.31 | 100.00 |
50 | 1.59b | 5.38c | 1.86 | 1.64b | 1.05a | 0.36 | 16.32 | |
70 | 1.69ab | 7.94b | 2.74 | 1.63b | 1.29a | 0.45 | 13.97 | |
90 | 1.72a | 8.37a | 2.89 | 1.62b | 1.16a | 0.47 | 12.20 | |
全钾 TK | 30 | 0.00 | 0.00 | 0.00 | 8.04a | 3.81d | 1.32 | 100.00 |
50 | 8.70c | 28.62b | 9.88 | 7.82a | 4.87c | 1.68 | 14.55 | |
70 | 9.13b | 43.17a | 14.90 | 8.11a | 6.25a | 2.16 | 12.65 | |
90 | 9.37a | 45.34a | 15.65 | 7.75a | 5.38b | 1.86 | 10.61 |
表6
不同地下孔(裂)隙度地表、地下泥沙养分流失状况"
养分 Nutrient | 孔(裂)隙度 Fissure porosity (%) | 地表泥沙Surface sediment | 地下泥沙Underground sediment | 地下流失比 Underground loss ratio (%) | ||||
---|---|---|---|---|---|---|---|---|
平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | 平均流失浓度 Average loss concentration (mg·L-1) | 流失量 Total loss (mg) | 养分流失模数 Nutrient loss modulus (mg·m-2·h-1) | |||
全氮 TN | 1 | 1.53a | 7.48a | 2.58 | 1.76a | 1.22b | 0.42 | 14.03 |
3 | 1.16b | 4.82b | 1.66 | 1.44b | 1.65b | 0.57 | 25.49 | |
5 | 1.47a | 3.96c | 1.37 | 0.85c | 2.92a | 1.01 | 42.42 | |
全磷 TP | 1 | 1.68b | 8.37a | 2.89 | 1.67b | 1.16c | 0.40 | 12.17 |
3 | 2.04a | 8.31a | 2.86 | 1.75ab | 2.02b | 0.70 | 19.58 | |
5 | 1.74b | 4.97b | 1.71 | 1.78a | 6.10a | 2.11 | 55.12 | |
全钾 TK | 1 | 9.18a | 45.34a | 15.65 | 7.72a | 5.38c | 1.86 | 10.61 |
3 | 8.70b | 36.21b | 12.50 | 7.37a | 8.50b | 2.93 | 19.01 | |
5 | 9.07a | 25.34c | 8.75 | 7.58a | 26.02a | 8.98 | 50.66 |
表7
雨强和孔(裂)隙度与各养分流失量相关性"
类型 Type | 因子 Factor | 径流Runoff | 泥沙Sediment | ||||
---|---|---|---|---|---|---|---|
TN | TP | TK | TN | TP | TK | ||
地表 Surface | 降雨强度 Rainfall intensity | 0.921** | 0.942** | 0.928** | 0.790** | 0.687* | 0.734* |
孔(裂)隙度 Fissure porosity (%) | -0.696* | -0.632* | -0.316 | 0.734* | 0.690* | 0.700* | |
地下Underground | 降雨强度 Rainfall intensity | 0.905** | 0.795** | 0.881** | 0.722* | 0.666* | 0.677* |
孔(裂)隙度 Fissure porosity (%) | -0.781* | -0.804** | -0.809** | 0.833** | 0.806** | 0.844** |
[1] |
CHEN P, LIAN Y. Modeling of soil loss and its impact factors in the Guijiang Karst river basin in Southern China. Environmental Earth Sciences, 2016,75(4):352.
doi: 10.1007/s12665-016-5288-z |
[2] | EVANS J E, LEVINE N S, ROBERTS S J. Assessment using GIS and sediment routing of the proposed removal of ballville dam, sandusky river, ohio. Journal of the American Water Resources Association, 2002,38(6):1549-1565. |
[3] | 何晓玲, 郑子成, 李廷轩. 不同耕作方式对紫色土侵蚀及磷素流失的影响. 中国农业科学, 2013,46(12):2492-2500. |
HE X L, ZHENG Z C, LI T X. Effects of tillage practices on soil erosion and phosphorus loss in sloping cropland of purple soil. Scientia Agricultura Sinica, 2013,46(12):2492-2500. (in Chinese) | |
[4] |
YANG L X, YANG G S, LI H P, YUAN S F. Effects of rainfall intensities on sediment loss and phosphorus enrichment ratio from typical land use type in Taihu Basin, China. Environmental Science and Pollution Research, 2020,27:12866-12937.
doi: 10.1007/s11356-018-04067-0 pmid: 30778937 |
[5] | YANG P, TANG Y Q, ZHOU N Q, WANG J X, YU T, ZHANG X. Characteristics of red clay creep in karst caves and loss leakage of soil in the karst rocky desertification area of Puding County, Guizhou, China. Environmental Earth Sciences, 2011,63(3):543-549. |
[6] | COOKSON W R, ROWARTH J S, CAMERON K C. The effect of autumn applied 15N-labelled fertilizer on nitrate leaching in a cultivated soil during winter . Nutrient Cycling in Agroecosystems, 2000,56:99-107. |
[7] |
FLYNN R M, SINREICH M. Characteristics of virus transport and attenuation in epikarst using short pulse and prolonged injection multi-tracer testing. Water Research, 2010,44(4):1138-1149.
pmid: 20018336 |
[8] | KOGOVSEK J, PETRIC M. Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia). Journal of Hydrology, 2014,519:1205-1213. |
[9] | 秦华, 李晔, 李波, 赵建博. 人工模拟降雨条件下石灰土养分流失规律. 水土保持学报, 2016,30(1):1-4, 53. |
QI H, LI Y, LI B, ZHAO J B. Nutrient loss of limestone soil under artificial simulated rainfall. Journal of Soil and Water Conservation, 2016,30(1):1-4, 53. (in Chinese) | |
[10] | 冯小杰, 郑子成, 李廷轩, 范丽. 暴雨条件下紫色土区玉米季坡耕地氮素流失特征. 中国农业科学, 2018,51(4):738-749. |
FENG J, ZHENG Z C, LI T X, FAN L. Characteristics of nitrogen loss in sloping cropland of purple soil during maize growth stage under rainstorm. Scientia Agricultura Sinica, 2018,51(4):738-749. (in Chinese) | |
[11] | 郑子成, 何淑勤, 尹忠, 何晓玲. 不同坡度下玉米季坡耕地地表径流中磷素流失特征. 水土保持学报, 2013,27(5):109-114. |
ZHENG Z C, HE S Q, YI Z, HE X L. Phosphorus loss of surface runoff in sloping cropland at different slopes during maize growing season. Journal of Soil and Water Conservation, 2013,27(5):109-114. (in Chinese) | |
[12] | 王全九, 王辉 . 黄土坡面土壤溶质随径流迁移有效混合深度模型特征分析. 水利学报, 2010,41(6):671-676. |
WANG Q J, WANG H. Analysis on the feature of effective mixing depth model for soil solute transporting with surface runoff on loess slope. Journal of Hydraulic Engineering, 2010,41(6):671-676. (in Chinese) | |
[13] | 吴士章, 朱文孝, 苏维词, 李坡, 周庆珍. 喀斯特地区土壤侵蚀及养分流失定位试验研究——以贵阳市修文县久长镇为例. 中国岩溶, 2005(3):36-39. |
WU S Z, ZHU W X, SU W C, LI P, ZHOU Q Z. Experiment on soil erosion and nutrient loss in karst area - A case in Jiuchang Town, Xiuwen, Guiyang. Carsologica Sinica, 2005(3):36-39. (in Chinese) | |
[14] | YAN Y, DAI Q, JIN L, XIANG W. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena, 2019,174:48-58. |
[15] | 周德全, 王世杰, 刘秀明. 石灰土(碳酸盐岩风化壳)形成地球化学过程研究. 地球与环境, 2005(2):31-38. |
ZHOU D Q, WANG S J, LIU X M. Study on geochemical processes in limestone soil profiles. Earth and Environment, 2005(2):31-38. (in Chinese) | |
[16] | 王劲松. 贵阳市花溪喀斯特地区生态与可持续发展规划研究[D]. 天津: 天津大学, 2007. |
WANG J S. Ecological and sustainable development planning of Huaxi karst area in Guiyang City[D]. Tianjin: Tianjin University, 2007. (in Chinese) | |
[17] | 戴全厚, 喻理飞, 杨智, 王佩将. 一种用于研究坡面径流和地下孔裂隙流的模拟试验装置: 中国, CN201010545602.7. 2011-03-23. |
DAI Q H, YU L F, YANG Z, WANG P J. Simulation test device for studying slope runoff and underground hole fissure flow. China, CN201010545602. 7. 2011-03-23 (in Chinese) | |
[18] | 严友进, 戴全厚, 伏文兵, 彭旭东, 靳丽. 喀斯特裸坡产流产沙过程试验研究. 生态学报, 2017,37(6):2067-2079. |
YAN Y J, DAI Q H, FU W B, PENG X D, JIN L. Runoff and sediment production processes on a Karst bare slope. Acta Ecologica Sinica, 2017,37(6):2067-2079. (in Chinese) | |
[19] | 李昌兰, 戴全厚, 彭旭东, 袁应飞. 喀斯特坡耕地浅层地下孔(裂)隙发育过程中径流产污特征. 环境科学学报, 2016,36(12):4437-4445. |
LI C L, DAI Q H, PENG X D, YUAN Y F. Characteristics of nitrogen, phosphorus and potassium losses in underground runoff of Karst slope farmlands during the developing process of shallow Karst fissure. Acta Scientiae Circumstantiae, 2016,36(12):4437-4445. (in Chinese) | |
[20] | 张文源, 王百田, 杨光檄, 张科利. 喀斯特黄壤区侵蚀性降雨及产沙特征分析. 生态环境学报, 2014,23(11):1776-1782. |
ZHANG W Y, WANG B T, YANG G X, ZHANG K L. Erosive rainfall and characteristics analysis of sediment yield on yellow soil area in Karst Mountainous. Ecology and Environment Sciences, 2014,23(11):1776-1782. (in Chinese) | |
[21] | GÓMEZ J A, NEARING M A. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena, 2005,59(3):253-266. |
[22] | 国家环境保护总局. 水和废水监测分析方法. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods. Beijing: China Environmental Science Press, 2002. (in Chinese) | |
[23] | YAKUTINA O P, NECHAEVA T V, SMIRNOVA N V. Consequences of snowmelt erosion: Soil fertility, productivity and quality of wheat on greyzemic phaeozem in the south of west Siberia. Agriculture, Ecosystems & Environment, 2015,200:88-93. |
[24] | ANGULOMARTÍNEZ M, BARROS A P. Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains. Geomorphology, 2015,228(1):28-40. |
[25] | JANJA KOGOVSEK, METKA PETRIC. Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia). Journal of Hydrology, 2014,519:1205-1213. |
[26] | 杨智, 戴全厚, 黄启鸿, 吴学强. 典型喀斯特坡面产流过程试验研究. 水土保持学报, 2010,24(4):78-81. |
YANG Z, DAI Q H, HUANG Q H, WU X Q. Experimental study of runoff processes on typical Karst slope. Journal of Soil and Water Conservation, 2010,24(4):78-81. (in Chinese) | |
[27] | 张志才, 陈喜, 程勤波, 彭韬, 张艳芳, 纪忠华. 喀斯特山体表层岩溶带水文地质特征分析——以陈旗小流域为例. 地球与环境, 2011,39(1):19-25. |
ZHANG Z C, CHEN X, CHENG Q B, PENG T, ZHANG Y F, JI Z H. Hydrogeology of epikarst in Karst Mountains-A case study of the Chenqi catchment. Earth and Environment, 2011,39(1):19-25. (in Chinese) | |
[28] | 肖继兵, 孙占祥, 蒋春光, 郑家明, 刘洋, 杨宁, 冯良山, 白伟. 辽西地区坡耕地垄膜沟种对土壤侵蚀和作物产量的影响. 中国农业科学, 2016,49(20):3904-3917. |
XIAO J B, SUN Z X, JIANG C G, ZHENG J M, LIU Y, YANG N, FENG L S, BAI W. Effect of technique of ridge film mulching and furrow seeding on soil erosion and crop yield on sloping farmland in Western Liaoning. Scientia Agricultura Sinica, 2016,49(20):3904-3917. (in Chinese) | |
[29] | 张信宝, 王世杰. 浅议喀斯特流域土壤地下漏失的界定. 中国岩溶, 2016,35(5):602-603. |
ZHANG X B, WANG S J. A discussion on the definition of soil leaking in a karst catchment. Carsologica Sinica, 2016,35(5):602-603. (in Chinese) | |
[30] | RAMOS M C, MARTINEZ-CASASNOVAS J A. Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agriculture Ecosystems & Environment, 2006,113(1):356-363. |
[31] |
PENG X, DAI Q, LL C, ZHAO L. Role of underground fissure flow in near-surface rainfall-runoff process on a rock mantled slope in the karst rocky desertification area. Engineering Geology, 2018,243:10-17.
doi: 10.1016/j.enggeo.2018.06.007 |
[32] | 张信宝, 王世杰, 贺秀斌, 汪阳春, 何永彬. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失. 地球与环境, 2007,35(3):202-206. |
ZHANG X B, WANG S J, HE X B, WANG Y C, HE Y B. Soil creeping in weathering crusts of carbonate rocks and underground soil losses on karst slopes. Earth and Environment, 2007,35(3):202-206. (in Chinese) | |
[33] | 王双, 叶良惠, 郑子成, 李廷轩. 玉米成熟期黄壤坡耕地径流及其氮素流失特征研究. 水土保持学报, 2018,32(6):28-33. |
WANG S, YE L H, ZHENG Z C, LI T X. Characteristics of runoff and nitrogen losses in yellow soil sloping cropland at mature stage of maize. Journal of Soil and Water Conservation, 2018,32(6):28-33. (in Chinese) | |
[34] | 陈玲, 刘德富, 宋林旭, 崔玉洁, 张革. 不同雨强下黄棕壤坡耕地径流养分输出机制研究. 环境科学, 2013,34(6):2151-2158. |
CHEN L, LIU D F, SONG L X, CUI Y J, ZHANG G. Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities. Environmental Science, 2013,34(6):2151-2158. (in Chinese) | |
[35] | GARCÍA-DÍAZ A, BIENES R, SASTRE B, NOVARA A, GRISTINA L, CERDÀ A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture Ecosystems & Environment, 2017,236:256-267. |
[36] |
LI, ZHAOXIA LIU, YAOJUN DAI, CUITING ZHOU, YIWENWANG, TIANWEI. Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agricultural Water Management, 2018,210:41-48.
doi: 10.1016/j.agwat.2018.07.032 |
[1] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[2] | 区惠平,周柳强,黄金生,谢如林,朱晓晖,彭嘉宇,曾艳,莫宗标,谭宏伟,叶盛勤. 赤红壤蔗区11年连续增量施磷下磷素演变及其 对甘蔗产量与磷流失的影响[J]. 中国农业科学, 2020, 53(22): 4623-4633. |
[3] | 冯小杰,郑子成,李廷轩,范丽. 暴雨条件下紫色土区玉米季坡耕地氮素流失特征[J]. 中国农业科学, 2018, 51(4): 738-749. |
[4] | 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率 及养分流失的影响[J]. 中国农业科学, 2018, 51(10): 1931-1939. |
[5] | 梁心蓝,赵龙山,吴佳,吴发启. 模拟条件下不同耕作措施和雨强对地表糙度的影响[J]. 中国农业科学, 2014, 47(24): 4840-4849. |
[6] | 肖波, 王慧芳, 王庆海, 武菊英, 滕文军, 戴全厚. 坡耕地上等高草篱的功能与效益综合分析[J]. 中国农业科学, 2012, 45(7): 1318-1329. |
[7] | 林超文,罗春燕,庞良玉、黄晶晶,涂仕华. 不同雨强和施肥方式对紫色土养分损失的影响[J]. 中国农业科学, 2011, 44(9): 1847-1854. |
[8] | 林代杰;郑子成;张锡洲;李廷轩;王永东 .玉米植株对降雨再分配过程的影响 [J]. 中国农业科学, 2011, 44(12): 2608-2615 . |
[9] | . 间歇降雨条件下黄土坡面土壤溶质的迁移特征[J]. 中国农业科学, 2009, 42(4): 1299-1305 . |
[10] | . 新的梅雨强度指数(IPRI)及其时空变化特征分析——以安徽省沿淮地区为例[J]. 中国农业科学, 2009, 42(4): 1325-1330 . |
[11] | 林超文,陈一兵,黄晶晶,涂仕华,庞良玉. 不同耕作方式和雨强对紫色土养分流失的影响[J]. 中国农业科学, 2007, 40(10): 2241-2249 . |
[12] | 纪雄辉,郑圣先,鲁艳红,廖育林. 施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J]. 中国农业科学, 2006, 39(12): 2521-2530 . |
[13] | 刘 方,罗海波,舒英格,刘元生,何腾兵,龙 健. 黄壤旱地-水系统中磷释放及影响因素的研究[J]. 中国农业科学, 2006, 39(01): 118-124 . |
[14] | 水建国,叶元林,王建红,柳茶茶. 中国红壤丘陵区水土流失规律与土壤允许侵蚀量的研究[J]. 中国农业科学, 2003, 36(2): 179-183 . |
[15] | 谢云,James R.Kiniry,Jimmy R.Williams,陈友民,林而达. 作物模型输入变量的敏感性分析[J]. 中国农业科学, 2002, 35(10): 1208-1214 . |
|