中国农业科学 ›› 2020, Vol. 53 ›› Issue (1): 133-147.doi: 10.3864/j.issn.0578-1752.2020.01.013
收稿日期:
2019-05-28
接受日期:
2019-10-29
出版日期:
2020-01-01
发布日期:
2020-01-19
通讯作者:
蔡润
作者简介:
潘健,E-mail:nillice@sina.com。
基金资助:
Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI()
Received:
2019-05-28
Accepted:
2019-10-29
Online:
2020-01-01
Published:
2020-01-19
Contact:
Run CAI
摘要:
【目的】通过以黄瓜9930_V2版本基因组为参照进行生物信息学分析,对ERF基因家族在基因组中的数量、结构以及表达特征进行分析,为研究ERF转录因子在黄瓜雌花分化与发育中的作用提供数据支持。【方法】根据已报道的拟南芥ERF,利用黄瓜基因组数据库中9930_V2版本基因组进行BLAST比对,通过MEGA、MEME、TBtools、ExPASy等工具进行生物信息学分析。采用qRT-PCR方法检测不同性型黄瓜材料、雌花发育初期不同阶段中ERF基因家族成员的表达水平。采用酵母单杂交方法验证家族成员与乙烯响应元件GCC-box的互作。【结果】从黄瓜材料9930基因组中鉴定得到138个ERF基因家族成员,共分为10个亚族,编码氨基酸长度介于126—745。按照基因家族成员在染色体上的位置分布,将其命名为CsERF1-CsERF138。多序列比对和motif分析结果表明,黄瓜ERF基因家族均具有AP2/ERF结构域,其中4个成员具有B3结构域。表达分析结果显示,在不同性型材料中共有19个ERF家族成员差异表达,其中9个在FFMMAA基因型中高表达,10个在ffMMAA基因型中高表达。通过雌花芽发育初期ERF家族成员的表达趋势分析,发现31个ERF随子房发育表达上调,30个表达下调。初步证明CsERF9和CsERF31具有结合GCC-box元件的功能。【结论】从黄瓜基因组中鉴定出138个ERF基因家族成员,均拥有1个或多个AP2/ERF结构域;其中部分成员在不同性型材料中差异表达,并可能参与雌花分化初期的基因表达调控;部分成员具有结合保守元件GCC-box调控下游基因表达的功能。
潘健,温海帆,何欢乐,连红莉,王刚,潘俊松,蔡润. 黄瓜ERF基因家族鉴定及其在雌花芽分化中的表达分析[J]. 中国农业科学, 2020, 53(1): 133-147.
Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation[J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
表1
CsERF基因家族相关信息"
名称 Name | 黄瓜基因组基因编号 ID in cucumber (9930_V2) | 注释到拟南芥成员 Annotated to Arabidopsis | 成员名称 Name in Arabidopsis | 所属亚族 Class | 氨基酸个数 Number of amino acids |
---|---|---|---|---|---|
CsERF1* | Csa1G000550 | AT5G61890 | ERF114 | 2 | 216 |
CsERF2 | Csa1G042290 | AT1G68550 | ERF118 | 2 | 336 |
CsERF3 | Csa1G075030 | AT1G28360 | ERF12 | 4 | 164 |
CsERF4 | Csa1G075060 | AT5G44210 | ERF9 | 4 | 211 |
CsERF5 | Csa1G269870 | AT1G50680 | - | 5 | 339 |
CsERF6 | Csa1G275920 | AT1G16060 | ADAP | 6 | 363 |
CsERF7 | Csa1G340430 | AT1G15360 | WIN1 | 7 | 223 |
CsERF8 | Csa1G364460 | AT5G11590 | DREB3 | 9 | 250 |
CsERF9 | Csa2G177210 | AT3G23240 | ERF1B | 1 | 228 |
CsERF10 | Csa1G597730 | AT1G19210 | ERF017 | 9 | 203 |
CsERF11* | Csa1G605670 | AT2G05990 | MOD1 | 5 | 745 |
CsERF12* | Csa2G001000 | AT5G11590 | DREB3 | 9 | 252 |
CsERF13 | Csa2G006270 | AT1G15360 | WIN1 | 7 | 246 |
CsERF14* | Csa2G092800 | AT5G17430 | BBM | 6 | 650 |
CsERF15 | Csa2G138780 | AT4G13620 | ERF062 | 10 | 400 |
CsERF16 | Csa1G423190 | AT5G57390 | AIL5 | 6 | 466 |
CsERF17 | Csa2G177220 | AT3G23230 | ERF098 | 1 | 126 |
CsERF18 | Csa2G279250 | AT4G36920 | AP2 | 6 | 483 |
CsERF19* | Csa2G279260 | AT2G23340 | ERF008 | 9 | 159 |
CsERF20* | Csa2G297760 | AT2G33710 | ERF112 | 2 | 285 |
CsERF21* | Csa2G307850 | AT1G78080 | RAP2-4 | 10 | 362 |
CsERF22 | Csa2G349090 | AT1G12980 | ESR1 | 4 | 358 |
CsERF23* | Csa2G354000 | AT4G37750 | ANT | 6 | 696 |
CsERF24 | Csa2G356600 | AT1G46768 | RAP2-1 | 9 | 142 |
CsERF25* | Csa2G363010 | AT1G75490 | DREB2D | 8 | 212 |
CsERF26 | Csa2G374590 | AT5G11590 | DREB3 | 9 | 231 |
CsERF27 | Csa2G382540 | AT5G25190 | ERF003 | 7 | 175 |
CsERF28* | Csa2G382550 | AT5G25190 | ERF003 | 7 | 164 |
CsERF29* | Csa2G401240 | AT1G22810 | ERF019 | 9 | 148 |
CsERF30* | Csa3G017320 | AT4G17500 | ERF1A | 1 | 279 |
CsERF31 | Csa3G135120 | AT3G23240 | ERF1B | 1 | 228 |
CsERF32 | Csa3G018320 | AT4G17490 | ERF6 | 1 | 344 |
CsERF33 | Csa3G019400 | AT2G44940 | ERF034 | 9 | 214 |
CsERF34 | Csa3G042390 | AT5G52020 | ERF025 | 9 | 170 |
CsERF35 | Csa3G073900 | AT3G20310 | ERF7 | 4 | 214 |
CsERF36* | Csa3G114470 | AT5G65510 | AIL7 | 6 | 283 |
CsERF37 | Csa3G116720 | AT2G44840 | ERF13 | 1 | 144 |
CsERF38 | Csa3G116730 | AT2G44840 | ERF13 | 1 | 157 |
CsERF39 | Csa3G389850 | AT3G23240 | ERF1B | 1 | 224 |
CsERF40* | Csa3G120390 | AT4G27950 | CRF4 | 3 | 283 |
CsERF41 | Csa3G124760 | AT5G19790 | RAP2-11 | 3 | 243 |
CsERF42 | Csa3G133130 | AT1G68550 | ERF118 | 2 | 213 |
CsERF43 | Csa3G135620 | AT3G23230 | ERF098 | 1 | 158 |
CsERF44 | Csa3G135630 | AT3G23230 | ERF098 | 1 | 133 |
CsERF45 | Csa3G152130 | AT5G18560 | ERF086 | 4 | 326 |
CsERF46* | Csa3G164580 | AT3G16770 | RAP2-3 | 2 | 225 |
CsERF47 | Csa3G180260 | AT4G25470 | DREB1C | 9 | 213 |
CsERF48* | Csa3G207390 | AT4G34410 | ERF109 | 2 | 274 |
CsERF49 | Csa3G357110 | AT4G27950 | CRF4 | 3 | 326 |
CsERF50* | Csa3G118010 | AT2G44940 | ERF034 | 9 | 230 |
CsERF51 | Csa3G630280 | AT4G13040 | - | 10 | 234 |
CsERF52 | Csa3G646560 | AT3G14230 | RAP2-2 | 2 | 370 |
CsERF53* | Csa3G652380 | AT1G72570 | AIL1 | 6 | 490 |
CsERF54 | Csa3G736760 | AT2G28550 | RAP2-7 | 6 | 527 |
CsERF55*# | Csa3G751430 | AT2G36450 | ERF024 | 9 | 183 |
CsERF56* | Csa3G751440 | AT4G25490 | DREB1B | 9 | 204 |
CsERF57 | Csa3G812170 | AT3G57600 | DREB2F | 8 | 333 |
CsERF58* | Csa3G822440 | AT2G41710 | - | 6 | 432 |
CsERF59 | Csa3G827310 | AT3G54320 | WRI1 | 6 | 337 |
CsERF60 | Csa3G865380 | AT1G75490 | DREB2D | 8 | 184 |
CsERF61 | Csa3G878210 | AT5G25390 | SHN3 | 7 | 194 |
CsERF62 | Csa3G895680 | AT4G32800 | ERF043 | 9 | 227 |
CsERF63 | Csa4G001970 | AT3G16770 | RAP2-3 | 2 | 272 |
CsERF64 | Csa4G004960 | AT1G15360 | WIN1 | 7 | 190 |
CsERF65 | Csa4G006210 | AT5G25190 | ERF003 | 7 | 180 |
CsERF66 | Csa4G007070 | AT1G28160 | ERF087 | 4 | 227 |
CsERF67 | Csa4G007650 | AT1G71450 | ERF021 | 9 | 179 |
CsERF68 | Csa4G023020 | AT5G61600 | ERF104 | 1 | 194 |
CsERF69 | Csa4G051360 | AT4G23750 | CRF2 | 3 | 319 |
CsERF70 | Csa4G192030 | AT5G19790 | RAP2-11 | 3 | 225 |
CsERF71 | Csa4G268100 | AT5G19790 | RAP2-11 | 3 | 211 |
CsERF72* | Csa4G290800 | AT1G51190 | PLT2 | 6 | 615 |
CsERF73 | Csa4G292470 | AT2G28550 | RAP2-7 | 6 | 456 |
CsERF74 | Csa4G314390 | AT2G40340 | DREB2C | 8 | 372 |
CsERF75 | Csa4G370550 | AT1G21910 | ERF012 | 9 | 232 |
CsERF76 | Csa4G630010 | AT3G15210 | ERF4 | 4 | 193 |
CsERF77 | Csa4G641590 | AT3G50260 | ERF011 | 9 | 149 |
CsERF78* | Csa4G644740 | AT4G37750 | ANT | 6 | 573 |
CsERF79 | Csa4G649620 | AT1G74930 | ERF018 | 9 | 186 |
CsERF80 | Csa4G652640 | AT5G25190 | ERF003 | 7 | 203 |
CsERF81 | Csa5G139630 | AT4G27950 | CRF4 | 3 | 268 |
CsERF82 | Csa5G146300 | AT5G19790 | RAP2-11 | 3 | 210 |
CsERF83 | Csa5G150420 | AT1G64380 | ERF061 | 10 | 304 |
CsERF84 | Csa5G151530 | AT4G23750 | CRF2 | 3 | 318 |
CsERF85 | Csa5G155560 | AT5G52020 | ERF025 | 9 | 252 |
CsERF86* | Csa5G155570 | AT4G25470 | DREB1C | 9 | 225 |
CsERF87 | Csa5G165850 | AT4G17500 | ERF1A | 1 | 250 |
CsERF88 | Csa5G167110 | AT5G07580 | ERF106 | 1 | 160 |
CsERF89* | Csa5G167120 | AT5G51190 | ERF105 | 1 | 235 |
CsERF90 | Csa5G174570 | AT5G51990 | DREB1D | 9 | 200 |
CsERF91 | Csa5G175970 | AT2G28550 | RAP2-7 | 6 | 441 |
CsERF92 | Csa5G598600 | AT1G24590 | ESR2 | 4 | 341 |
CsERF93 | Csa5G608380 | AT1G68840 | RAV2 | 5 | 344 |
CsERF94 | Csa5G609620 | AT1G68550 | ERF118 | 2 | 309 |
CsERF95* | Csa5G612310 | AT3G54320 | WRI1 | 6 | 439 |
CsERF96* | Csa5G637750 | AT5G19790 | RAP2-11 | 3 | 395 |
CsERF97 | Csa5G647260 | AT5G25810 | TINY | 9 | 163 |
CsERF98 | Csa5G649870 | AT1G33760 | ERF022 | 9 | 163 |
CsERF99 | Csa5G649890 | AT1G71450 | ERF021 | 9 | 192 |
CsERF100* | Csa6G011730 | AT2G40220 | ABI4 | 8 | 305 |
CsERF101 | Csa6G012810 | AT2G40340 | DREB2C | 8 | 410 |
CsERF102 | Csa6G167230 | AT1G50640 | ERF3 | 4 | 219 |
CsERF103* | Csa6G040610 | AT1G21910 | ERF012 | 9 | 201 |
CsERF104 | Csa6G042450 | AT2G46310 | CRF5 | 3 | 243 |
CsERF105* | Csa6G055940 | AT5G61890 | ERF114 | 2 | 404 |
CsERF106 | Csa6G091830 | AT5G13330 | ERF113 | 2 | 191 |
CsERF107 | Csa6G104640 | AT4G32800 | ERF043 | 9 | 213 |
CsERF108* | Csa6G124180 | AT2G40340 | DREB2C | 8 | 179 |
CsERF109 | Csa6G133770 | AT4G27950 | CRF4 | 3 | 281 |
CsERF110* | Csa6G017030 | AT5G61890 | ERF114 | 2 | 310 |
CsERF111* | Csa6G296960 | AT2G28550 | RAP2-7 | 6 | 497 |
CsERF112 | Csa6G318160 | AT3G16770 | RAP2-3 | 2 | 231 |
CsERF113 | Csa6G361330 | AT1G19210 | ERF017 | 9 | 213 |
CsERF114 | Csa6G404260 | AT3G54320 | WRI1 | 6 | 366 |
CsERF115 | Csa6G421660 | AT1G50640 | ERF3 | 4 | 214 |
CsERF116#* | Csa6G450420 | AT2G36450 | ERF024 | 9 | 224 |
CsERF117* | Csa6G486790 | AT5G61890 | ERF114 | 2 | 338 |
CsERF118 | Csa6G490860 | AT4G34410 | ERF109 | 2 | 193 |
CsERF119 | Csa6G491020 | AT4G36920 | AP2 | 6 | 537 |
CsERF120* | Csa6G491030 | AT5G67190 | ERF010 | 9 | 173 |
CsERF121* | Csa6G496390 | AT4G37750 | ANT | 6 | 629 |
CsERF122 | Csa6G500550 | AT1G78080 | RAP2-4 | 10 | 271 |
CsERF123 | Csa6G518040 | AT3G15210 | ERF4 | 4 | 246 |
CsERF124 | Csa6G518290 | AT5G47220 | ERF2 | 1 | 177 |
CsERF125 | Csa6G518300 | AT4G18450 | ERF091 | 1 | 277 |
CsERF126 | Csa7G047400 | AT2G20880 | ERF053 | 10 | 397 |
CsERF127 | Csa7G049230 | AT5G44210 | ERF9 | 4 | 209 |
CsERF128* | Csa7G073700 | AT4G34410 | ERF109 | 2 | 256 |
CsERF129 | Csa7G352440 | AT4G13040 | - | 10 | 231 |
CsERF130 | Csa7G375820 | AT3G23240 | ERF1B | 1 | 231 |
CsERF131 | Csa7G375830 | AT3G23230 | ERF098 | 1 | 148 |
CsERF132* | Csa7G431330 | AT1G16060 | ADAP | 6 | 367 |
CsERF133 | Csa7G432080 | AT5G25190 | ERF003 | 7 | 196 |
CsERF134 | Csa7G432130 | AT1G80580 | ERF084 | 3 | 183 |
CsERF135 | Csa7G447150 | AT5G11590 | DREB3 | 9 | 201 |
CsERF136* | Csa7G448110 | AT1G53910 | RAP2-12 | 2 | 389 |
CsERF137 | CsaUNG003730 | AT5G13910 | LEP | 4 | 228 |
CsERF138* | CsaUNG031640 | AT1G13260 | RAV1 | 5 | 317 |
[1] | UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). Production of cucumbers and gherkins in 2016[OL], 2017. |
[2] | MALEPSZY S, NIEMIROWICZ-SZCZYTT K . Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Science, 1991,80(1/2):39-47. |
[3] | ZHANG Z J, ZHANG H W, QUAN R D, WANG X C, HUANG R F . Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology, 2009,150(1):365-377. |
[4] | XIAO Y Y, CHEN J Y, KUANG J F, SHAN W, XIE H, JIANG Y M, LU W J . Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 2013,64(8):2499-2510. |
[5] | LI T, JIANG Z Y, ZHANG L C, TAN D M, WEI Y, YUAN H, LI T L, WANG A D . Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal, 2016,88(5):735-748. |
[6] | ZHU X L, QI L, LIU X, CAI S B, XU H J, HUANG R F, LI J R, WEI X N, Z, ZHANG Z Y . The wheat ethylene response factor transcription factor PATHOGEN-INDUCED ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant physiology, 2014,164(3):1499. |
[7] | OHME-TAKAGI M, SHINSHI H . Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 1995,7:173-182. |
[8] | LORENZO O, PIQUERAS R, SÁNCHEZ-SERRANO J J, SOLANO R . ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003,15:165-178. |
[9] | MAO J L, MIAO Z Q, WANG Z, YU L H, CAI X T, XIANG C B . Arabidopsis ERF1 mediates cross-Talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet, 2016,12:e1006076. |
[10] | ZHONG S W, SHI H, XUE C, WEI N, GUO H W, DENG X W . Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proceeding of the National Academy of Sciences of the United States of America, 2014,111:3913-3920. |
[11] | TAO Q Y, NIU H H, WANG Z Y, ZHANG W H, WANG H, WANG S H, ZHANG X, LI Z . Ethylene responsive factor ERF110 mediates ethylene-regulated transcription of a sex determination-related orthologous gene in two Cucumis species. Journal of Experimental Botany, 2018,69:2953-2965. |
[12] | PAN J, WANG G, WEN H F, DU H, LIAN H L, HE H, PAN J S, CAI R . Differential gene expression caused by the F and M loci provides insight into ethylene-mediated female flower differentiation in cucumber. Fronts in Plant Science, 2018,9:1091. |
[13] | HU L F, LIU S Q . Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetic Molecular Biology, 2011,34:624-633. |
[14] | HUANG S W, LI R Q, ZHANG Z H, LI L, GU X F, FAN W, LUCAS W J, WANG X W, XIE B Y, NI P X ,et al. The genome of the cucumber, Cucumis sativus L. Nature Genetics, 2009,41:1275-1281. |
[15] | CHEN C J, XIA R, CHEN H, HE Y H . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018,3:289660. doi: https://doi.org/ 10.1101/289660. |
[16] | OLIVEROS J C. Venny, An interactive tool for comparing lists with Venn’s diagrams.2007-2015, [OL]. |
[17] | YAN T X, CHEN M H, SHEN Q, LI L, FU X Q, PAN Q F, TANG Y L, SHI P, LV Z Y, JIANG W M, MA Y N, HAO X L, SUN X F, TANG K X . HOMEODOMAIN PROTEIN 1 is required for jasmonate- mediated glandular trichome initiation in Artemisia annua. New Phytologist, 2017,213:1145-1155. |
[18] | XIN T X, ZHANG Z, LI S, ZHANG S, LI Q, ZHANG Z H, HUANG S W, YANG X Y . Genetic regulation of ethylene dosage for cucumber fruit elongation. The Plant Cell, 2019. doi: https://doi.org/10.1105/ tpc.18.00957. |
[19] | SAITO S, FUJII N, MIYAZAWA Y, YAMASAKI S, MATSUURA S, MIZUSAWA H, FUJITA Y, TAKAHASHI H . Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. Journal of Experimental Botany, 2007,58(11):2897-2907. |
[20] | CHEN H M, SUN J J, LI S, CUI Q Z, ZHANG H M, XIN F J, WANG H S, LIN T, GAO D L, WANG S H, LI X, WANG D H, ZHANG Z H, XU Z H, HUANG S W . An ACC oxidase gene essential for cucumber carpel development. Molecular Plant, 2016,9:1315-1327. |
[21] | JOFUKU K D, DEN BOER B G W, VAN MONTAGU M, OKAMURO J K . Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 1994,6(9):1211-1225. |
[22] | ZHOU M L, TANG Y X, WU Y M . Genome-wide analysis of AP2/ERF transcription factor family in Zea mays. Current Bioinformatics, 2012,7(3):324-332. |
[23] | LATA C, MISHRA A K, MUTHAMILARASAN M, BONTHALA V S, KHAN Y, PRASAD M . Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS ONE, 2014,9:e113092. |
[24] | LICAUSI F, GIORGI F M, ZENONI S, OSTI F, PEZZOTTI M, PERATA P . Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010,11:719. |
[25] | ITO T M, POLIDO P B, RAMPIM M C, KASCHUK G , SOUZA S G H. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genetic Molecular Research, 2014,13:7839-7851. |
[26] | BAI S L, PENG Y B, CUI J X, GU H T, XU L Y, LI Y Q, XU Z H, BAI S N . Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta, 2004,220:230-240. |
[27] | 张存立, 郭红卫 . 乙烯信号转导通路研究. 自然杂志, 2012,34(4):219-228. |
ZHANG C L, GUO H W . Study on ethylene signal transduction pathway. China Journal of Nature, 2012,34(4):219-228. (in Chinese) | |
[28] | LI Z, HUANG S W, LIU S Q, PAN J S, ZHANG Z H, TAO Q Y, SHI Q X, JIA Z Q, ZHANG W W, CHEN H M, SI L T, ZHU L H, CAI R . Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics, 2009,182:1381-1385. |
[29] | LI Z, PAN J S, GUAN Y, TAO Q Y, HE H L, SI L T, CAI R . Development and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant(Cucumis sativus L.). Theoretical and Applied Genetics, 2008 117:1253-1260. |
[30] | LI Z, WANG S, TAO Q T, PAN J S, SI L T, GONG Z H, CAI R . A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). Journal of Experimental Botany, 2012,63:4475-4484. |
[31] | 崔清志, 陈宸, 田云, 刘晓虹, 陈惠明 . 不同基因型黄瓜性别与乙烯释放速率的关系. 中国蔬菜, 2016(3):37-42. |
CUI Q Z, CHEN C, TIAN Y. LIU X H, CHEN H M . Relationship between cucumber sex of different genotypes and ethylene release rate. China Vegetables, 2016(3):37-42. | |
[32] | KRIZEK B A, LEWIS M W, FLETCHER J C . RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant Journal, 2006,45(3):369-383. |
[33] | JEON J. CHO C, LEE M R, VAN BINH N, KIM J . CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. The Plant Cell, 2016,28:1828-1843. |
[1] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[2] | 李桂香,李秀环,郝新昌,李智文,刘峰,刘西莉. 山东省多主棒孢对三种常用杀菌剂的敏感性监测及对氟吡菌酰胺的抗性[J]. 中国农业科学, 2022, 55(7): 1359-1370. |
[3] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[4] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[5] | 王君正,张琪,高子星,马雪强,屈锋,胡晓辉. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087. |
[6] | 李正刚,农媛,汤亚飞,佘小漫,于琳,蓝国兵,邓铭光,何自福. 侵染广东连州葫芦的黄瓜绿斑驳花叶病毒的分子特征 及致病性分析[J]. 中国农业科学, 2020, 53(5): 955-964. |
[7] | 周琪,刘小萍,薄凯亮,苗晗,董邵云,顾兴芳,张圣平. 黄瓜叶酸合成关键基因克隆与分析[J]. 中国农业科学, 2020, 53(18): 3764-3776. |
[8] | 蔡和序,薄凯亮,周琪,苗晗,董邵云,顾兴芳,张圣平. 黄瓜幼苗下胚轴长度GWAS分析及候选基因挖掘[J]. 中国农业科学, 2020, 53(1): 122-132. |
[9] | 宋维源,侯钰,赵剑宇,刘小凤,张小兰. 黄瓜CsRPL1/2的克隆及其功能分析[J]. 中国农业科学, 2020, 53(1): 148-159. |
[10] | 牛志红,宋晓飞,李晓丽,郭晓雨,何书强,贺栾劲芝,冯志红,孙成振,闫立英. 黄瓜单性结实性状遗传与QTL定位[J]. 中国农业科学, 2020, 53(1): 160-171. |
[11] | 亓飞,林姝,宋蒙飞,张孟茹,陈姝延,张乃心,陈劲枫,娄群峰. 黄瓜抗白粉病突变体筛选与鉴定[J]. 中国农业科学, 2020, 53(1): 172-182. |
[12] | 揣红运,石延霞,柴阿丽,杨杰,谢学文,李宝聚. 10%乙霉威·腐霉利微粉剂的研制及其 对黄瓜棒孢叶斑病的防治效果[J]. 中国农业科学, 2019, 52(6): 1009-1020. |
[13] | 刘志平,武雪萍,李若楠,郑凤君,张孟妮,李生平,宋霄君. 温室滴灌条件下施用鸡粪和磷肥对土壤磷素的影响[J]. 中国农业科学, 2019, 52(20): 3637-3647. |
[14] | 李若楠,黄绍文,史建硕,王丽英,唐继伟,张怀志,袁硕,翟凤芝,任燕利,郭丽. 日光温室冬春茬黄瓜滴灌的肥水优化管理[J]. 中国农业科学, 2019, 52(20): 3648-3660. |
[15] | 朱常安,和志豪,蔡泽林,刘健飞,张智. 融合镁元素的水肥多因子耦合对黄瓜综合营养品质的调控[J]. 中国农业科学, 2019, 52(18): 3258-3270. |
|