中国农业科学 ›› 2020, Vol. 53 ›› Issue (1): 148-159.doi: 10.3864/j.issn.0578-1752.2020.01.014
收稿日期:
2019-06-03
接受日期:
2019-07-02
出版日期:
2020-01-01
发布日期:
2020-01-19
通讯作者:
张小兰
作者简介:
宋维源,E-mail:songwy@cau.edu.cn。
基金资助:
WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG()
Received:
2019-06-03
Accepted:
2019-07-02
Online:
2020-01-01
Published:
2020-01-19
Contact:
XiaoLan ZHANG
摘要:
【目的】AtRPL是拟南芥果实发育调控网络中的重要基因,参与胎座框的形成。同源克隆黄瓜的RPL,进行表达模式分析,在拟南芥中异源过表达CsRPL,探究CsRPL的生物学功能。【方法】根据拟南芥AtRPL信息在黄瓜基因组数据库中比对,克隆得到黄瓜CsRPL;利用MEGA5.2对CsRPL与其他物种同源蛋白进行氨基酸序列比对;利用实时荧光定量PCR(qRT-PCR)及原位杂交技术检测CsRPL在黄瓜中的表达模式;在拟南芥中异源表达CsRPL,并对转基因植株进行表达和表型分析。【结果】在黄瓜中存在两个RPL,分别命名为CsRPL1和CsRPL2,均含有BELL-Domain、Homeodomain保守域和两个EAR-Motif。CsRPL1在黄瓜各个部位均有表达,在开放的雄花中表达量最高,且在果实生长前期,其表达量随着果实的发育逐渐降低;CsRPL2在黄瓜各部位表达量均显著低于CsRPL1。原位杂交显示CsRPL1/2在黄瓜果实的胎座框中表达,且杂交信号在茎尖分生组织(SAM)的Central zone(CZ)区域富集。拟南芥异源过表达CsRPL1/2转基因植株的果荚变短,花粉育性降低,且种子发育受到抑制。【结论】CsRPL1/2参与生殖器官的发育,且可能存在功能冗余,在正常生长条件下,CsRPL1优先发挥功能。相比于AtRPL,CsRPL1/2的功能并不完全保守。
宋维源,侯钰,赵剑宇,刘小凤,张小兰. 黄瓜CsRPL1/2的克隆及其功能分析[J]. 中国农业科学, 2020, 53(1): 148-159.
WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber[J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
表1
引物序列"
引物名称 Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
CsRPL1-F | ATGGCTGAGGGTATTGAATCCTAC |
CsRPL1-R | TCAGCCCACAAAGTCATGTAACAGC |
CsRPL2-F | ATGGCGGAGGGTTTTGAAGTTTAC |
CsRPL2-R | TCAAAACCACTCATTTACAAACCCT |
CsRPL1-1300-F | TACACCAAATCGACTCTAGAATGGCTGAGGGTATTGAATC |
CsRPL1-1300-A | CCTTGCTCACCATGGTACCGCCCACAAAGTCATGTAACA |
CsRPL2-1300-F | TACACCAAATCGACTCTAGAATGGCGGAGGGTTTTGAAGT |
CsRPL2-1300-A | CCTTGCTCACCATGGTACCAAACCACTCATTTACAAACC |
35S-F | GTAAGGGATGACGCACAATC |
CsRPL1-OV-R | ATTGAGAGAAGCGTTGATTTATGAG |
CsRPL2-OV-R | TACTCAAATGTCGTAACCACTGCTT |
UBI-F | CACCAAGCCCAAGAAGATC |
UBI-R | TAAACCTAATCACCACCAGC |
Actin-F | CCTTCGTCTTGATCTTGCGG |
Actin-R | AGCGATGGCTGGAACAGAAC |
CsRPL1-qPCR-F | CCGCTCACAATGGAAAACCC |
CsRPL1-qPCR-R | AGGATACATTCAAGGGCTCG |
CsRPL2-qPCR-F | TACGCCTCCTTTCGTTCCACT |
CsRPL2-qPCR-R | TTGTCGTCGGAGATGTTAGGG |
CsRPL1-SP6 | GATTTAGGTGACACTATAGAATGCTACCCGCTCACAATGGAAAAC |
CsRPL1-T7 | TGTAATACGACTCACTATAGGGGTCCACCCATCACATACCCA |
CsRPL2-SP6 | GATTTAGGTGACACTATAGAATGCTCTTCTTCTTTTTTTTCACCCG |
CsRPL2-T7 | TGTAATACGACTCACTATAGGGCTTCCAAGGAGTCAAAAACGG |
图1
黄瓜CsRPL1/2与拟南芥AtRPL的进化树和基因结构分析 A:黄瓜与拟南芥BELL亚家族基因蛋白序列系统发育树分析,红色实线框内为AtRPL和与其同源的CsRPL1/2。BEL1(AT5G41410);ATH1(AT4G32980);BLH1(AT2G35940);BLH2/SAW1(AT4G36870);BLH3(AT1G75410);BLH4/SAW2(AT2G23760);BLH5(AT2G27220);BLH6(AT4G34610);BLH7(AT2G16400);BLH8/PNF(AT2G27990);BLH9/RPL(AT5G02030):BLH10(AT1G19700);BLH11(AT1G75430)。B:紫色方块代5′UTR、3′UTR;橙色方块代表外显子;直线代表内含子"
图2
黄瓜CsRPL与其他物种RPL同源蛋白序列比对 A:橙色实线框内为BELL-Domain,蓝色实线框内为Homeodomain,红色虚线框内为EAR-Motif。AtRPL:拟南芥RPL(NP_195823.1);GmRPL:甜瓜RPL(XP_008448414.1);VvRPL:葡萄RPL(XP_010654234.1);PpRPL:桃RPL(XP_007208167.1);GhRPL:棉花RPL(XP_016738976.1);MdRPL:苹果RPL(XP_008363517.1);GmRPL:大豆RPL(XP_003516903.1);SlRPL:番茄RPL(XP_004246395.1);ZmRPL:玉米RPL:(NP_001168681.1);TaRPL:小麦RPL(BAJ04689.1);OsRPL:水稻RPL(XP_015641948.1)。B—E:BELL (B)、Homeodomain保守域(C)和EAR-Motif(D—E)的氨基酸保守性分析。D中的氨基酸序列不包括葡萄、棉花以及单子叶植物玉米、水稻和小麦;星号代表完全保守氨基酸"
[1] | ROEDER A H K, FERRANDIZ C, YANOFSKY M F . The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology, 2003,13(18):1630-1635. |
[2] | SCOTT M P, WEINER A J . Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1984,81(13):4115-4119. |
[3] | ITO M, SATO Y, MATSUOKA M . Involvement of homeobox genes in early body plan of monocot. International Review of Cytology, 2002,218:1-35. |
[4] | HAKE S, SMITH H M S, HOLTAN H, MAGNANI E, MELE G, RAMIREZ J . The role of KNOX genes in plant development. Annual Review of Cell and Developmental Biology, 2004,20:125-151. |
[5] | BÜRGLIN T R . Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Research, 1997,25(21):4173-4180. |
[6] | BÜRGLIN T R . The PBC domain contains a MEINOX domain: coevolution of Hox and TALE homeobox genes. Development Genes and Evolution, 1998,208(2):113-116. |
[7] | VOLLBRECHT E, VEIT B, SINHA N, HAKE S . The developmental gene knotted-1 is a member of a maize homeobox gene family. Nature, 1991,350(6315):241-243. |
[8] | BELLAOUI M, PIDKOWICH M S, SAMACH A, KUSHALAPPA K, KOHALMI S E, MODRUSAN Z, CROSBY W L, HAUGHN G W . The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. The Plant Cell, 2001,13(11):2455-2470. |
[9] | MULLER J, WANG Y M, FRANZEN R, SANTI L, SALAMINI F, ROHDE W . In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant Journal, 2001,27(1):13-23. |
[10] | COLE M, NOLTE C, WERR W . Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete subdomains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Research, 2006,34(4):1281-1292. |
[11] | REISER L, MODRUSAN Z, MARGOSSIAN L, SAMACH A, OHAD N, HAUGHN G W, FISCHER R L . The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 1995,83(5):735-742. |
[12] | TRAAS J, VERNOUX T . The shoot apical meristem: The dynamics of a stable structure. Philosophical transactions of the Royal Society B-Biological Sciences, 2002,357(1422):737-747. |
[13] | AIDA M, TASAKA M . Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 2006,9(1):72-77. |
[14] | BLECKMANN A, SIMON R . Interdomain signaling in stem cell maintenance of plant shoot meristems. Molecular Cells, 2009,27(6):615-620. |
[15] | ENDRIZZI K, MOUSSIAN B, HAECKER A, LEVIN J Z, LAUX T . The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant Journal, 1996,10(6):967-979. |
[16] | LONG J A, MOAN E I, MEDFORD J I, BARTON M K . A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996,379(6560):66-69. |
[17] | BHATT A M, ETCHELLS J P, CANALES C, LAGODIENKO A, DICKINSON H . VAAMANA-a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene, 2004,328:103-111. |
[18] | BYRNE M E, GROOVER A T, FONTANA J R, MARTIENSSEN R A . Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development, 2003,130(17):3941-3950. |
[19] | SMITH H M S, HAKE S . The interaction of two homeobox genes,BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. The Plant Cell, 2003,15(8):1717-1727. |
[20] | SMITH H M S, CAMPBELL B C, HAKE S . Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Current Biology, 2004,14(9):812-817. |
[21] | KANRAR S, BHATTACHARYA M, ARTHUR B, COURTIER J, SMITH H M S . Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant Journal, 2008,54(5):924-937. |
[22] | ANDRÉS F, ROMERA-BRANCHAT M, MARTÍNEZ-GALLEGOS R, PATEL V, SCHNEEBERGER K, JANG S, ALTMÜLLER J, NÜRNBERG P, COUPLAND G . Floral induction in Arabidopsis by FLOWERING LOCUS T requires direct repression of BLADE-ON- PETIOLE genes by the homeodomain protein PENNYWISE. Plant Physiology, 2015,169(3):2187-2199. |
[23] | 张娟, 颜爽爽, 赵文圣, 张小兰 . 黄瓜CsFT基因的克隆及其功能分析. 园艺学报, 2013,40(11):2180-2188. |
ZHANG J, YAN S S, ZHAO W S, ZHANG X L . Cloning and functional analysis of CsFT in cucumber. Acta Horticulturae Sinica, 2013,40(11):2180-2188. (in Chinese) | |
[24] | 柳美玲, 丁莲, 张小兰 . 蔬菜作物的RNA原位杂交技术. 山西农业大学学报, 2013,33(1):42-45. |
LIU M L, DING L, ZHANG X L . RNA in situ hybridization in vegetable plants. Journal of Shanxi Agricultural University, 2013,33(1):42-45. (in Chinese) | |
[25] | HAY A, TSIANTIS M . KNOX genes: versatile regulators of plant development and diversity. Development, 2010,137(19):3153-3165. |
[26] | BAO X Z, FRANKS R G, LEVIN J Z, LIU Z C . Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. The Plant Cell, 2004,16(6):1478-1489. |
[27] | DINNENY J R, WEIGEL D, YANOFSKY M F . A genetic framework for fruit patterning in Arabidopsis thaliana. Development, 2005,132(21):4687-4696. |
[28] | KANRAR S, ONGUKA O, SMITH H M S . Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta, 2006,224(5):1163-1173. |
[29] | YU L F, PATIBANDA V, SMITH H M S . A novel role of BELL1-like homeobox genes PENNYWISE and POUND-FOOLISH in floral patterning. Planta, 2008,229(3):693-707. |
[30] | HAMANT O, PAUTOT V . Plant development: A TALE story. Comptes Rendus Biologies, 2010,333(4):371-381. |
[31] | ETCHELLS J P, MOORE L, JIANG W Z, PRESCOTT H, CAPPER R, SAUNDERS N J, BHATT A M, DICKINSON H G . A role for BELLRINGER in cell wall development is supported by loss-of- function phenotypes. BMC Plant Biology, 2012,12:212. doi: 10.1186/1471-2229-12-212. |
[32] | ARNAUD N, PAUTOT V . Ring the BELL and tie the KNOX: Roles for TALEs in gynoecium development. Frontiers in Plant Science, 2014,5:93. doi: 10.3389/fpls.2014.00093. |
[33] | CHÁVEZ MONTES R A, HERRERA-UBALDO H, SERWATOWSKA J, DE FOLTER S . Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 2015,3:3-12. |
[34] | BENCIVENGA S, SERRANO-MISLATA A, BUSH M, FOX S, SABLOWSKI R . Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Developmental Cell, 2016,39(2):198-208. |
[35] | GONZÁLEZ-REIG S, RIPOLL J J, VERA A, YANOFSKY M F, MARTÍNEZ-LABORDA A . Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit. PLoS Genetics, 2012,8(11):e1003020. |
[36] | OHTA M, MATSUI K, HIRATSU K, SHINSHI H, OHME-TAKAGI M . Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell, 2001,13(8):1959-1968. |
[37] | HIRATSU K, MATSUI K, KOYAMA T, OHME-TAKAGI M . Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant Journal, 2003,34(5):733-739. |
[38] | HILL K, WANG H, PERRY S E . A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant Journal, 2008,53(1):172-185. |
[39] | TIWARI S B, HAGEN G, GUILFOYLE T J . Aux/IAA proteins contain a potent transcriptional repression domain. The Plant Cell, 2004,16(2):533-543. |
[40] | HONYS D, TWELL D . Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology, 2003,132(2):640-652. |
[41] | SMYTH D R, BOWMAN J L, MEYEROWITZ E M . Early flower development in Arabidopsis. The Plant Cell, 1990,2(8):755-767. |
[42] | ITO T, WELLMER F, YU H, DAS P, ITO N, ALVES-FERREIRA M, RIECHMANN J L, MEYEROWITZ E M . The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 2004,430(6997):356-360. |
[43] | HORD C L H, CHEN C B, DEYOUNG B J, CLARK S E, MA H . The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. The Plant Cell, 2006,18(7):1667-1680. |
[44] | JIA G X, LIU X D, OWEN H A, ZHAO D Z . Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(6):2220-2225. |
[45] | ALBRECHT C, RUSSINOVA E, HECHT V, BAAIJENS E, DE VRIES S . The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. The Plant Cell, 2005,17(12):3337-3349. |
[46] | MIZUNO S, OSAKABE Y, MARUYAMA K, ITO T, OSAKABE K, SATO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Receptor- like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal, 2007,50(5):751-766. |
[47] | CANALES C, BHATT A M, SCOTT R, DICKINSON H . EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology, 2002,12(20):1718-1727. |
[48] | FENG B M, LU D H, MA X, PENG Y B, SUN Y J, NING G, MA H . Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant Journal, 2012,72(4):612-624. |
[49] | WILSON Z A, MORROLL S M, DAWSON J, SWARUP R, TIGHE P J . The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant Journal, 2001,28(1):27-39. |
[50] | SORENSEN A M, KRÖBER S, UNTE U S, HUIJSER P, DEKKER K, SAEDLER H . The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant Journal, 2003,33(2):413-423. |
[51] | XU J, DING Z W, VIZCAY-BARRENA G, SHI J X, LIANG W Q, YUAN Z, WERCK-REICHHART D, SCHREIBER L, WILSON Z A, ZHANG D B . ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell, 2014,26(4):1544-1556. |
[1] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 李桂香,李秀环,郝新昌,李智文,刘峰,刘西莉. 山东省多主棒孢对三种常用杀菌剂的敏感性监测及对氟吡菌酰胺的抗性[J]. 中国农业科学, 2022, 55(7): 1359-1370. |
[4] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[5] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[6] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
[7] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[8] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[9] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[10] | 韩冬梅,黄石连,欧阳思颖,张乐,卓侃,吴振先,李建光,郭栋梁,王静. 提升龙眼果实耐贮性的果期病害防治与养分优化管理[J]. 中国农业科学, 2022, 55(21): 4279-4293. |
[11] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[12] | 李昂,苗玉乐,孟君仁,牛良,潘磊,鲁振华,崔国朝,王志强,曾文芳. 溶质和硬质型桃果实成熟过程果肉多肽组学分析[J]. 中国农业科学, 2022, 55(11): 2202-2213. |
[13] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[14] | 宣旭娴,盛子璐,解振强,黄雨晴,巩培杰,张川,郑婷,王晨,房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析[J]. 中国农业科学, 2021, 54(6): 1199-1217. |
[15] | 宋彪,徐凯悦,王晓华,郭九信,吴良泉,苏达. 蜜柚果实不同空间部位植酸及矿质营养有效性的分布特征[J]. 中国农业科学, 2021, 54(6): 1229-1242. |
|