[1] |
HANSON A D, GREGORY J F. Folate biosynthesis, turnover, and transport in plants. Annual Review of Plant Biology, 2011,62(1):105-125.
doi: 10.1146/annurev-arplant-042110-103819
|
[2] |
BASSET G J C, QUINLIVAN E P, GREGORY J F, HANSON A D. Folate synthesis and metabolism in plants and prospects for biofortification. Crop Science, 2005,45(2):449-453.
doi: 10.2135/cropsci2005.0449
|
[3] |
DE LEPELEIRE J, STROBBE S, VERSTRAETE J, BLANCQUAERT D, VISSER R G F, STOVE C, WAN DER STRAITEN D. Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. Molecular Plant, 2018,11(1):175-188.
doi: 10.1016/j.molp.2017.12.008
pmid: 29277427
|
[4] |
NADERI N, HOUSE J D. Recent developments in folate nutrition. Advances in food and nutrition research, 2018,83.
doi: 10.1016/bs.afnr.2017.11.001
pmid: 29477220
|
[5] |
PIETRZIK K, BAILEY L, SHANE B. Folic acid and L-5- methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics. Clinical Pharmacokinetics, 2010,49(8):535-548.
doi: 10.2165/11532990-000000000-00000
pmid: 20608755
|
[6] |
WATANABE S, OHTANI Y, TATSUKAMI Y, AOKI W, AMEMIYA T, SUKEKIYO Y, KUBOKAWA S, UEDA M. Folate biofortification in hydroponically cultivated spinach by the addition of phenylalanine. Journal of Agricultural and Food Chemistry, 2017. doi: 10.1021/acs.jafc.7b01375.
pmid: 32936632
|
[7] |
LUCOCK M. Folic Acid: Nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 2000,71(1/2):121-138.
doi: 10.1006/mgme.2000.3027
|
[8] |
董薇. 水稻籽粒叶酸含量QTL分析及生物强化[D]. 北京: 中国农业科学院, 2011.
|
|
DONG W. QTL analysis and biofortification of folate content in rice (Oryza sativa L.). Beijing: Beijing Chinese Academy of Agricultural Sciences. 2011. (in Chinese)
|
[9] |
韩娟英, 何曦, 蒋宙蕾, 梅沙, 张宁, 吴殿星. 富含叶酸水稻研究进展. 中国稻米, 2017,23(6):10-15.
|
|
HAN J Y, HE X, JIANG Z L, MEI S, ZHANG N, WU D X. Progress on high folate content rice. China Rice, 2017,23(6):10-15. (in Chinese)
|
[10] |
邵丽华, 王莉, 白文文, 刘雅娟. 山西谷子资源叶酸含量分析及评价. 中国农业科学, 2014,47(7):1265-1272.
doi: 10.3864/j.issn.0578-1752.2014.07.003
|
|
SHAO L H, WANG L, BAI W W, LIU Y J. Evaluation and analysis of folic acid content in millet from different ecological regions in Shanxi province. Scientia Agricultura Sinica, 2014,47(7):1265-1272. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.07.003
|
[11] |
MARTÍNEZ A B O, BERRUEZO G R, CAVA M J B, GRACIÁ C M, CASTÓN, J P. Folate and folic acid intake estimation and food enrichment requirements. Archivos Latinoamericanos De Nutricion, 2005,55(1):5-14.
pmid: 16187672
|
[12] |
SAINI R K, NILE S H, KEUM Y S. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Research International, 2016,89(pt.1):1-13.
doi: 10.1016/j.foodres.2016.07.013
pmid: 28460896
|
[13] |
梁颖, 张毅, 李艺, 丁莹, 刘贤金. 烹饪及贮藏对八种常见叶菜中叶酸含量的影响. 现代食品科技, 2018,34(3):173-177.
|
|
LIANG Y, ZHANG Y, LI Y, DING Y, LIU X J. Effects of cooking methods and storage on folates in leafy vegetables. Modern Food Science and Technology, 2018,34(3):173-177. (in Chinese)
|
[14] |
BASSET G J C, QUINLIVAN E P, GREGORY J F, HANSON A D. Folate synthesis and metabolism in plants and prospects for biofortification. Crop Science, 2005,45(2):449-453.
doi: 10.2135/cropsci2005.0449
|
[15] |
BASSET G J C, QUINLIVAN E P, ZIEMAK M J, DE LA GARZA R D, FISCHER M, SCHIFFMANN S, BACHER A, GREGORY J F, HANSON A D. Folate synthesis in plants: The first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proceedings of the National Academy of Sciences, 2002,99(19):12489-12494.
doi: 10.1073/pnas.192278499
|
[16] |
NUNES A C S, KALKMANN D C, ARAGO F J L. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Research, 2009,18(5):661-667.
doi: 10.1007/s11248-009-9256-1
|
[17] |
DE LA GARZA R D, QUINLIVAN E P, KLAUS S M J, BASSET G J C, GREGORY J F, HANSON A D. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(38):13720-13725.
doi: 10.1073/pnas.0404208101
pmid: 15365185
|
[18] |
RAVANEL S, QUINLIVAN E P, WHITE R, GIOVANNONI J, REBEILLE F, NICHOLS B, SHINOZAKI K, SEKI M, GREGORY J HANSON A D, Folate synthesis in plants: The last step of the p -aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. The Plant Journal, 2004,40(4):453-461.
doi: 10.1111/j.1365-313X.2004.02231.x
pmid: 15500462
|
[19] |
HOSSAIN T, ROSENBER G I, SELHUB J, KISHORE G. Enhancement of folate in plants through metabolic engineering. Proceedings of the National Academy of Sciences, 2004,101(14):5158-5163.
|
[20] |
BEKAERT S, STOROZHENKO S, MEHRSHAHI P, BENNETT M J, LAMBERT W, GREGORY J F, SCHUBERT K, HUGENHOLTZ J, WAN SER STRAETEN D, HANSON A D. Folate biofortification in food plants. Trends in Plant Science, 2008,13(1):28-35.
doi: 10.1016/j.tplants.2007.11.001
|
[21] |
张圣平, 顾兴芳. 黄瓜重要农艺性状的分子生物学. 中国农业科学, 2020,53(1):117-121.
doi: 10.3864/j.issn.0578-1752.2020.01.011
|
|
ZHANG S P, GU X F. Molecular biology of important agronomic traits in cucumber. Scientia Agricultura Sinica, 2020,53(1):117-121. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.01.011
|
[22] |
WAN X, HAN L D, YANG M, ZHANG H Y, ZHAN C Y, HU P. Simultaneous extraction and determination of mono-/polyglutamyl folates using high-performance liquid chromatography-tandem mass spectrometry and its applications in starchy crops. Analytical and Bioanalytical Chemistry, 2019,411(13):2891-2904.
doi: 10.1007/s00216-019-01742-0
pmid: 30888468
|
[23] |
WANG M, JIANG B, PENG Q W, LIU W R, HE X M, LIANG Z J, LIN Y E. Transcriptome analyses in different cucumber cultivars provide novel insights into drought stress responses. International Journal of Molecular Sciences, 2018,19(7):2067.
|
[24] |
刘盼娜, 顾兴芳, 苗晗, 黄三文, 张忠华, 崔金莹, 王烨, 张圣平. 黄瓜核心种质遗传多样性的苗期和初花期形态标记分析. 植物遗传资源学报, 2015,16(3):472-478.
|
|
LIU P N, GU X F, MIAO H, HUANG S W, ZHANG Z H, CUI J Y, WANG Y, ZHANG S P. Genetic diversity analysis of seeding and early flowering stage morphological marker in cucumber core germplasm. Acta plantarum genetic resources, 2015,16(3):472-478. (in Chinese)
|
[25] |
WALLER J C, AKHTAR T A, LARA-NÚÑEZ A, GREGORY J F, MCQUINN R P, GIOVANNONI J J, HANSON A D. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Molecular Plant, 2010,3(1):66-77.
doi: 10.1093/mp/ssp057
pmid: 20085893
|
[26] |
GUSSIN G N. Activation of transcription initiation and regulation of tryptophan biosynthesis in fluorescent pseudomonad// pseudomonas. Springer, Boston, MA, 2004: 293-322.
|
[27] |
ANUKUL N, RAMOS R A, MEHRSHAHI P, CASTELAZO A S, PARGER H, DIEVART A, LANAU N, MIEULET D, TUCKER G, GUIDERDONI E, BARRETT D A, BENNETT M J. Folate polyglutamylation is required for rice seed development. Rice, 2010,3(2/3):181-193.
doi: 10.1007/s12284-010-9040-0
|
[28] |
姚琳. 大豆GmGCHI和GmADCS基因共表达对拟南芥叶酸含量的影响[D]. 武汉: 华中农业大学 2013.
|
|
YAO L. The effect of co-expression of Glycine max GmGCHI and GmADCS genes on the folate content of Arabidopsis thaliana[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
|
[29] |
BLANCQUAERT D, VAN DAELE J, STOROZHENKO S, STOVE C, LAMBERT W, WAN DER STRAETEN D. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Molecular Biology, 2013,83(4/5):329-349.
doi: 10.1007/s11103-013-0091-7
|
[30] |
梁业红. 过量表达细菌的FolC和FolP基因对提高拟南芥叶酸含量的研究[D]. 北京: 中国农业科学院, 2005.
|
|
LIANG Y H. Elevation of the folate content of Arabidopsis plants by overexpression of the bacteria FolC and FolP genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2005. (in Chinese)
|
[31] |
DE LA GARZA R I D, GREGORY J F, HANSON A D. Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences. 2007,104(10):4218-4222.
doi: 10.1073/pnas.0700409104
|
[32] |
STOROZHENKO S, DE BROUWER V, VOLCKAERT M, NAVARRETE O, BLANCQUAERT D, ZHANG G F, LAMBERT W, WAN DER STRAETEN D. Folate fortification of rice by metabolic engineering. Nature Biotechnology, 2007,25(11):1277-1279.
doi: 10.1038/nbt1351
pmid: 17934451
|