中国农业科学 ›› 2019, Vol. 52 ›› Issue (22): 4002-4015.doi: 10.3864/j.issn.0578-1752.2019.22.006
收稿日期:
2019-06-14
接受日期:
2019-08-12
出版日期:
2019-11-16
发布日期:
2019-11-16
通讯作者:
卢峰,邹剑秋
作者简介:
张飞,Tel:024-31029903;E-mail:zhangfei19821121@163.com
基金资助:
ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng(),ZOU JianQiu(
)
Received:
2019-06-14
Accepted:
2019-08-12
Online:
2019-11-16
Published:
2019-11-16
Contact:
Feng LU,JianQiu ZOU
摘要:
【目的】土壤盐渍化是制约作物生产的重要非生物胁迫因子之一,高粱耐盐性强,进行高粱耐盐基因挖掘及分子机制研究是开发和利用盐渍土壤的有效途径,通过转录组测序分析与高粱耐盐相关的基因调控机制和代谢通路,挖掘高粱耐盐潜力。【方法】 通过以筛选出的极耐盐品种八叶齐和盐极敏感品种PL212为试验材料,采用盆栽沙培,在播种后20 d(5叶期)采用180 mmol·L -1的 NaCl 溶液漫灌模拟盐逆境,盐胁迫48 h后取幼叶,并连同对照(未经过盐处理)的同期幼苗共4个样品提取RNA,进行转录组测序,采用qRT-PCR方法对测序结果进行验证。 【结果】 耐盐和盐敏感材料分别在盐渍和非盐渍处理下的4个样品间共检测到1 338个差异表达基因,包括819个上调基因和519个下调基因。聚类分析发现在应答盐渍胁迫逆境时,5个依赖性氧合酶超家族蛋白、4个富含半胱氨酸的激酶、3个谷胱甘肽S-转移酶和3个重金属运输/解毒超家族蛋白相关基因表现出明显的上调表达和下调表达,还发现1个K +转运蛋白基因在耐盐调节中起着重要作用。GO分析发现在15 418个基因中获得4 528个有效GO注释条目,同时耐盐和盐敏感材料在遭受盐逆境时的生物过程、细胞组分和分子功能3个方面均存在较大差异。生物过程中代谢过程、细胞过程耐盐材料明显高于盐敏感材料,耐盐材料的生理过程中较盐敏感材料增加了多生物过程和定位这两个过程,很可能与耐盐材料盐抗性较强密切相关。差异基因KEGG分析结果显示耐盐和盐敏感材料在对照和盐渍胁迫条件下的苯丙烷类生物合成、苯丙氨酸代谢、类黄酮生物合成3个途径中差异基因表达较多,可能是造成耐盐和盐敏感材料耐盐性差异较大的重要原因。 【结论】 高粱耐盐调控基因表达涉及生物过程、细胞组分和分子功能多个方面,生物过程和定位这两个过程是提高高粱耐盐性的关键;苯丙烷类生物合成、苯丙氨酸代谢、类黄酮生物合成3个途径的基因表达很可能是造成盐害的重要原因。
张飞,王艳秋,朱凯,张志鹏,朱振兴,卢峰,邹剑秋. 不同耐盐性高粱在盐逆境下的比较转录组分析[J]. 中国农业科学, 2019, 52(22): 4002-4015.
ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress[J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
表1
测序数据质量统计"
样品 Sample | 序列长度 Length (bp) | Bases (Billion) | Q20比例 Q20 percentage (%) | Q30比例 Q30 percentage (%) | G和C占总碱基数量百分比 GC(%) |
---|---|---|---|---|---|
CK-耐盐 CK-tolerant | 147.45 | 64.89 | 96.09 | 90.20 | 52.18 |
CK-盐敏感 CK-sensitive | 147.57 | 61.35 | 95.85 | 89.74 | 53.44 |
Salt-耐盐 Salt-tolerant | 147.64 | 61.72 | 95.85 | 89.73 | 52.38 |
Salt-盐敏感 Salt-sensitive | 147.41 | 61.95 | 95.93 | 89.89 | 53.28 |
表2
不同表达水平区间的基因数量及比例统计"
项目 Item | 样品 Sample | RPKM值RPKM value | |||||
---|---|---|---|---|---|---|---|
0—0.1 | 0.1—1 | 1—3 | 3—15 | 15—60 | >60 | ||
基因数量 Number of genes | CK-耐盐CK-tolerant | 2125 | 6815 | 4570 | 8046 | 4345 | 1371 |
CK-盐敏感CK-sensitive | 2392 | 6985 | 4621 | 9605 | 3890 | 1377 | |
Salt-耐盐Salt-tolerant | 2075 | 6687 | 4537 | 8024 | 4436 | 1364 | |
Salt-盐敏感Salt-sensitive | 2258 | 6864 | 4625 | 7811 | 3927 | 1281 | |
基因表达比例 Gene expression ratio (%) | CK-耐盐CK-tolerant | 7.79 | 24.98 | 16.75 | 29.49 | 15.96 | 5.03 |
CK-盐敏感CK-sensitive | 8.90 | 26.00 | 17.20 | 28.30 | 14.48 | 5.03 | |
Salt-耐盐Salt-tolerant | 7.65 | 24.65 | 16.73 | 29.58 | 16.36 | 5.03 | |
Salt-盐敏感Salt-sensitive | 8.44 | 25.64 | 17.28 | 29.18 | 14.67 | 4.79 |
表3
盐胁迫下4个高粱样品间的差异表达基因"
样品比较 Sample-VS-Sample | 上调基因 Up-regulated genes | 下调基因 Down-regulated genes |
---|---|---|
CK-耐盐VS CK-盐敏感 CK-tolerant VS CK-sensitive | 346 | 134 |
Salt-耐盐VS Salt-盐敏感 Salt-tolerant VS Salt-sensitive | 353 | 200 |
Salt-耐盐VS CK-耐盐 Salt-tolerant VS CK-tolerant | 62 | 122 |
Salt-盐敏感VS CK-盐敏感 Salt-sensitive VS CK-sensitive | 58 | 63 |
表4
高粱耐盐相关基因及功能描述"
基因ID Gene_ID | log2FC | KOG | KEGG/ec | Best-hit-Arabi-name | Arabi-symbol | 功能描述 Arabi-decline |
---|---|---|---|---|---|---|
Sobic.001G314300.v3.1 | 2.29 | KOG0143 | 1.14.11.9 | AT5G24530.1 | DMR6 | 铁离子转运蛋白 Fe ion transport protein |
Sobic.006G190000.v3.1 | 1.91 | KOG0143 | 1.14.11.9 | AT5G24530.1 | DMR6 | 铁离子转运蛋白 Fe ion transport protein |
Sobic.001G526900.v3.1 | 1.40 | KOG0143 | 1.14.11.9 | AT5G24530.1 | DMR6 | 铁离子转运蛋白 Fe ion transport protein |
Sobic.001G166401.v3.1 | 1.27 | KOG0143 | AT3G19000.1 | 铁离子转运蛋白 Fe ion transport protein | ||
Sobic.009G044400.v3.1 | 1.19 | KOG0143 | 1.14.17.4 | AT1G77330.1 | 铁离子转运蛋白 Fe ion transport protein | |
Sobic.001G215900.v3.1 | 1.29 | KOG1187 | 2.7.11.1 | AT1G70520.1 | CRK2 | 富含半胱氨酸的蛋白激酶 Cysteine-rich protein kinase |
Sobic.002G327700.v3.1 | 1.18 | KOG1187 | 2.7.11.1 | AT4G23310.1 | CRK23 | 富含半胱氨酸的蛋白激酶 Cysteine-rich protein kinase |
Sobic.002G327800.v3.1 | 1.23 | KOG1187 | 2.7.11.1 | AT4G05200.1 | CRK25 | 富含半胱氨酸的蛋白激酶 Cysteine-rich protein kinase |
Sobic.008G099300.v3.1 | 1.72 | 2.7.11.1 | AT4G00970.1 | CRK41 | 富含半胱氨酸的蛋白激酶 Cysteine-rich protein kinase | |
Sobic.003G164800.v3.1 | 1.33 | KOG0867 | 2.5.1.18 | AT3G62760.1 | ATGSTF13 | 谷胱甘肽S-转移酶家族蛋白 Glutathione S-transferase family protein |
Sobic.001G318900.v3.1 | 2.12 | KOG0406 | 2.5.1.18 | AT1G10360.1 | ATGSTU18,GST29, GSTU18 | 谷胱甘肽S-转移酶TAU 18 Glutathione S-transferase TAU 18 |
Sobic.001G318200.v3.1 | 2.02 | KOG0406 | 2.5.1.18 | AT1G10360.1 | ATGSTU18,GST29,GSTU18 | 谷胱甘肽S-转移酶TAU 18 Glutathione S-transferase TAU 18 |
Sobic.006G113800.v3.1 | 2.24 | AT5G48290.1 | 重金属运输/解毒超家族蛋白 Heavy metal transport/detoxification superfamily protein | |||
Sobic.006G114200.v3.1 | 1.93 | AT5G48290.1 | 重金属运输/解毒超家族蛋白 Heavy metal transport/detoxification superfamily protein | |||
Sobic.006G257700.v3.1 | 1.53 | KOG1603 | AT1G01490.1 | 重金属运输/解毒超家族蛋白 Heavy metal transport/detoxification superfamily protein | ||
Sobic.002G220600.v3.1 | 1.09 | AT2G30070.1 | ATKT1,ATKT1P,ATKUP1,KT1,KUP1 | 钾转运蛋白 Potassium transport protein | ||
Sobic.002G416600.v3.1 | 1.97 | 1.11.1.7 | 过氧化物酶超家族蛋白 Peroxidase superfamily protein |
表5
高粱耐盐基因分布及注释到基因"
基因本体 Gene ontology term | 集群频率 (出现集群/总集群数量) Cluster frequency(Appears number/total number) | 基因组使用频率 Genome frequency of use | 修正P值 Corrected P-value | 注释到基因集群 Annotated gene cluster |
---|---|---|---|---|
膜 Membrane | 12 /14 85.7% | 1862/15418, 12.1% | 5.37e-09 | Sobic.004G073400.v3.1, Sobic.002G329600.v3.1, Sobic.007G210500.v3.1, Sobic.004G182300.v3.1, Sobic.006G003700.v3.1, Sobic.002G339100.v3.1, Sobic.002G367700.v3.1, Sobic.005G037300.v3.1, Sobic.002G220600.v3.1, Sobic.006G021900.v3.1, Sobic.002G201900.v3.1, Sobic.010G146100.v3.1 |
膜部分 Membrane part | 9/14 64.3% | 1043 /15418 6.8% | 3.37e-07 | Sobic.002G201900.v3.1, Sobic.006G021900.v3.1, Sobic.005G037300.v3.1, Sobic.004G182300.v3.1, Sobic.007G210500.v3.1, Sobic.002G329600.v3.1, Sobic.004G073400.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1 |
膜整体 Integral to membrane | 8 /14 57.1% | 829 /15418 5.4% | 1.21e-06 | Sobic.004G182300.v3.1, Sobic.004G073400.v3.1, Sobic.007G210500.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1, Sobic.006G021900.v3.1, Sobic.002G201900.v3.1, Sobic.005G037300.v3.1 |
膜固有 Intrinsic to membrane | 8 /14 57.1% | 841 /15418 5.5% | 1.35e-06 | Sobic.002G201900.v3.1, Sobic.006G021900.v3.1, Sobic.005G037300.v3.1, Sobic.004G182300.v3.1, Sobic.007G210500.v3.1, Sobic.004G073400.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1 |
[1] | 王佳丽, 黄贤金, 钟太洋 . 盐碱地可持续利用研究综述. 地理学报, 2011(66):673-684. |
WANG J L, HUANG X J, ZHONG T Y . A review of the sustainable use of saline-alkali soils. Acta Geographica Sinica, 2011(66):673-684. (in Chinese) | |
[2] | MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008(59):651-681. |
[3] | REDDY P S, REDDY D S, SIVASAKTHI K . Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Frontiers in Plant Science, 2016(7):529-536. |
[4] | KAFI M, ASADI H, GANJEALI A . Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyteKochia scoparia as alternative fodder in saline agroecosystems. Agricultural Water Management, 2010(97):139-147. |
[5] | LI M, YUYAMA N, LUO L . In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Molecular Breeding, 2009(24):41-47. |
[6] | GUAN Y A, WANG H L, QIN L . QTL mapping of bio-energy related traits in sorghum. Euphytica, 2011(182):431-440. |
[7] | LIU J, ZHU J K . A calcium sensor homolog required for plant salt tolerance. Science, 1998(280):1943-1945. |
[8] | GUO Y, HALFTER U, ISHITANI M . Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. The Plant Cell, 2002(13):1383-1400. |
[9] | ROXAS V P, LODHI S A, GARRETT D K . Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase, Plant Cell Physiology, 2000,41(11):1229-1234. |
[10] | 安静, 张荃 . 拟南芥液泡膜Na+/H+ 逆向转运蛋白的研究进展 . 生命科学, 2006,18(3):273-278. |
AN J, ZHANG Q . Advances in the study of Na+/H+ antiporter in the tonoplast of Arabidopsis thaliana. Life Science, 2006,18(3):273-278. (in Chinese) | |
[11] | ZHANG C Z, YANG H H, LI H, DAI H . Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. Phytopathology, 2007(155):431-436. |
[12] | ROMUALDI C, BORTOLUZZI S, D'ALESSI F, DANIELI G A . IDEG6: A web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiology Genomics, 2003(12):159-162. |
[13] | 赵丽娜, 张芙蓉, 莫霏, 黄隆堂, 张屹东 . 甜瓜盐碱逆境生理响应及相关基因研究进展. 上海农业学报, 2016,32(6):176-180. |
ZHAO L N, ZHANG F R, MO F, HUANG L T, ZHANG Y D . Research progress on the physiological response and related genes of melon-alkali stress in melon. Journal of Shanghai Agricultural Sciences, 2016,32(6):176-180. (in Chinese) | |
[14] | 董蔚, 邬培祥, 杨宁, 刘锡江, 宋玉光 . 紫花苜蓿盐胁迫响应WRKY转录因子的克隆及表达特征分析. 植物生理学报, 2018,54(9):1481-1489. |
DONG W, WU P X, YANG N, LIU X J, SONG Y G . Cloning and expression analysis of WRKY transcription factors in response to salt stress of alfalfa. Chinese Journal of Plant Physiology, 2018,54(9):1481-1489. (in Chinese) | |
[15] | 黄芳, 徐珍珍, 孟珊, 刘静, 汪保华, 沈新莲 . 盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用. 江苏农业学报, 2017,33(6):1220-1226. |
HUANG F, XU Z Z, MENG S, LIU J, WANG B H, SHEN X L . Transcriptional activation of cotton LTR-reflexion under salt stress and its application in salt tolerance related genes discovery. Jiangsu Journal of Agricultural Sciences, 2017,33(6):1220-1226. (in Chinese) | |
[16] | 张国儒, 庞胜群, 郭晓珊, 单淑玲 . 加工番茄耐盐突变体耐盐相关基因的转录组分析. 分子植物育种, 2018,16(18):5884-5896. |
ZHANG G R, PANG S Q, GUO X S, SHAN S L . Transcriptome analysis of salt-tolerant genes in tomato salt-tolerant mutants. Molecular Plant Breeding, 2018,16(18):5884-5896. (in Chinese) | |
[17] | 岳小红, 曹靖, 耿杰, 李瑾, 张宗菊, 张琳捷 . 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际pH变化的影响. 生态学报, 2018,38(20):7373-7380. |
YUE X H, CAO J, GENG J, LI J, ZHANG Z J, ZHANG L J . Effects of salt stress on growth, ion balance and rhizosphere pH of malting barley seedlings. Acta Ecologica Sinica, 2018,38(20):7373-7380. (in Chinese) | |
[18] | HERNANDEZ M, FERNANDEZ-GARCIA N, DIAZ-VIVANCOS P . A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of Experimental Botany, 2010(61):521-535. |
[19] | XU D, DUAN X, WANG B . Expression of a late embryogenesis abundant protein gene, HVA1, from barley conferred tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 1996,110(1):249-257. |
[20] | 端木慧子, 陶鑫, 王建慧, 韦恒, 李海英, 马春泉 . 甜菜M14品系盐胁迫转录组数据库的转录因子分析. 黑龙江大学工程学报, 2017,8(4):48-54. |
DUANMU H Z, TAO X, WANG J H, WEI H, LI H Y, MA C Q . Transcription factor analysis of salt stress transcriptome database of sugar beet M14 strain. Journal of Engineering of Heilongjiang University, 2017,8(4):48-54. (in Chinese) | |
[21] | 张晓钗, 李亮, 何宁芳, 龚雪晴, 主朋月, 王晓阳 . 不同盐度胁迫下杜氏盐藻全转录组测序及注释. 微生物学报, 2019,3(1):1-20. |
ZHANG X C, LI L, HE N F, GONG X Q, ZHU P Y, WANG X Y . Sequencing and annotation of the whole transcriptome of Dunaliella salina under different salinity stresses. Journal of Microbiology, 2019,3(1):1-20. (in Chinese) | |
[22] | 王春霞, 王全九, 刘建军, 苏李君, 单鱼洋, 庄亮 . 灌水矿化度及土壤含盐量对南疆棉花出苗率的影响. 农业工程学报, 2010,26(9):28-33. |
WANG C X WANG Q J, LIU J J, SU L J, SHAN Y Y, ZHUANG L . Effects of irrigation salinity and soil salinity on cotton emergence rate in southern Xinjiang. Journal of Agricultural Engineering, 2010,26(9):28-33. (in Chinese) | |
[23] | 陈冠旭, 秦贵龙, 李恩广, 赵春梅, 乔利仙, 王晶珊, 隋炯明 . 花生蛋白磷酸2C家族基因的鉴定和盐胁迫响应分析. 华北农学报, 2018,33(3):71-77. |
CHEN G X, QIN G L, LI E G, ZHAO C M, QIAO L X, WANG J S, SUI J M . Identification and salinity stress-responsive analysis of PP2C genes in peanut. Acta Agriculturae Boreali-Sinica, 2018,33(3):71-77. (in Chinese) | |
[24] | WAMBUA J M, MAKOBE M N, NJUE E M . Hydroponic screening of sorghum (Sorghum bicolor L. Moench) cultivars for salinity tolerance. Journal of Agriculture Science & Technology, 2017,12(2):269-277. |
[25] | NETONDO G W, ONYANGO J C, BECK E . Sorghum and salinity II gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 2004,44:806-811. |
[26] | QUINTERO F J, OHTA M, SHI H . Reconstitution in yeast of theArabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the USA , 2002(99):9061-9066. |
[27] | 戴漪晨, 黄铎, 王福玲, 林汉明 . 组学在大豆耐盐研究中的应用. 土壤与作物, 2015,4(1):1-11. |
DAI Y C, HUANG D, WANG F L, LIN H M . Application of omics in salt tolerance research of soybean. Soil and Crop, 2015,4(1):1-11. (in Chinese) | |
[28] | 白子彧, 丁博, 李杨, 陈小强, 李迎霞, 杜亚军, 郭雨, 谢晓东 . 小麦盐应答基因TaSR1的生物信息学鉴定及表达验证. 麦类作物学报, 2017,37(3):307-311. |
BAI Z Y, DING B, LI Y, CHEN X Q, LI Y X, DU Y J, GUO Y, XIE X D . Bioinformatics identification and expression verification of wheat salt response gene TaSR1. Journal of Triticeae Crops, 2017,37(3):307-311. (in Chinese) | |
[29] | BLUMWALD E, POOLE R J . Na+/H+ antiport in isolated tonoplast vesicles from storage tissue ofBeta vulgaris. Plant Physiology , 1985(78):163-167. |
[30] | LIANG Y, SUN W, ZHU Y G . Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 2007(147):422-428. |
[31] | 彭振, 何守朴, 龚文芳, 潘兆娥, 贾银华, 卢艳丽, 杜雄明 . 陆地棉幼苗NaCl胁迫下转录因子的转录组学分析. 作物学报, 2017,43(3):354-370. |
PENG Z, HE S P, GONG W F, PAN Z E, JIA Y H, LU Y L, DU X M . A Transcriptomic analysis of transcription factors in upland cotton seedlings under NaCl stress. Acta Agronomica Sinica, 2017,43(3):354-370. (in Chinese) |
[1] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[2] | 尤佳玲,李有梅,孙孟豪,谢兆森. ‘黑比诺’葡萄不同叶龄叶片叶绿体内淀粉积累及其相关基因表达差异分析[J]. 中国农业科学, 2022, 55(21): 4265-4278. |
[3] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
[4] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[5] | 王劲松,董二伟,刘秋霞,武爱莲,王媛,王立革,焦晓燕. 行距和密度对籽粒饲用高粱产量和品质的影响[J]. 中国农业科学, 2022, 55(16): 3123-3133. |
[6] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[7] | 边兰星,梁丽琨,颜坤,宿红艳,李丽霞,董小燕,梅惠敏. 木霉对盐胁迫下枸杞根与叶内离子平衡和光系统II的影响[J]. 中国农业科学, 2022, 55(12): 2413-2424. |
[8] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[9] | 张北举,陈松树,李魁印,李鲁华,徐如宏,安畅,熊富敏,张燕,董俐利,任明见. 基于近红外光谱的高粱籽粒直链淀粉、支链淀粉含量检测模型的构建与应用[J]. 中国农业科学, 2022, 55(1): 26-35. |
[10] | 徐献斌,耿晓月,李慧,孙丽娟,郑焕,陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因[J]. 中国农业科学, 2022, 55(1): 134-151. |
[11] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[12] | 陈华枝,范元婵,蒋海宾,王杰,范小雪,祝智威,隆琦,蔡宗兵,郑燕珍,付中民,徐国钧,陈大福,郭睿. 基于纳米孔全长转录组数据完善东方蜜蜂微孢子虫的基因组注释[J]. 中国农业科学, 2021, 54(6): 1288-1300. |
[13] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[14] | 李顺国,刘猛,刘斐,邹剑秋,陆晓春,刁现民. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471-482. |
[15] | 孟蕊,刘晔,赵爽,房伟民,蒋甲福,陈素梅,陈发棣,管志勇. 砧穗互作对菊花嫁接苗耐盐性的影响[J]. 中国农业科学, 2021, 54(3): 629-642. |
|