中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 152-166.doi: 10.3864/j.issn.0578-1752.2022.01.013
郭永春1(),王鹏杰1,金珊1,侯炳豪1,王淑燕1,赵峰2(
),叶乃兴1(
)
收稿日期:
2021-03-12
接受日期:
2021-05-10
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
赵峰,叶乃兴
作者简介:
郭永春,E-mail: 基金资助:
GUO YongChun1(),WANG PengJie1,JIN Shan1,HOU Binghao1,WANG ShuYan1,ZHAO Feng2(
),YE NaiXing1(
)
Received:
2021-03-12
Accepted:
2021-05-10
Online:
2022-01-01
Published:
2022-01-07
Contact:
Feng ZHAO,NaiXing YE
摘要:
【目的】分析茶树响应草甘膦相关的基因表达规律和调控途径,在转录水平上探究草甘膦对茶树的作用,确定茶树响应草甘膦的关键基因。【方法】以茶树品种‘金观音’为试验材料,将推荐使用浓度的草甘膦施于茶树土壤基质表面,经0、0.25、1、3和7 d后,取叶片进行转录组测序,并测定莽草酸含量。利用WGCNA方法联合分析转录组和莽草酸含量数据,鉴定与草甘膦响应相关的共表达基因模块,筛选关键调控基因。【结果】茶树叶片中的莽草酸含量在草甘膦处理后0.25、1和3 d降低,而在7 d时大量积累(为未处理的6.99倍)。从表达谱数据中筛选得到12 568个差异表达基因(DEGs),草甘膦处理不同时间点与未处理数据比对的DEGs均显著富集在苯丙烷、类黄酮生物合成及植物激素信号转导途径;此外,草甘膦处理分别诱导茶树莽草酸代谢及其下游苯丙烷、类黄酮生物合成和激素信号转导途径相关的24、52、31和69个基因差异表达。通过加权基因共表达网络(WGCNA)方法鉴定得到19个基因模块,将转录组与莽草酸含量数据相关联,筛选到两个与草甘膦响应高度相关的关键基因模块,分别包含2 024和2 305个基因。选取关键模块中连通度最高的前50个基因进行共表达分析,获得6个关键调控基因,包括2个抗性基因(SHMT和RPM)、1个耐药性基因(PDR)、1个离子转运基因(At)、1个膜转运基因(GPT)和1个转录因子(ERF)。【结论】草甘膦通过干扰茶树叶片中莽草酸代谢,影响其下游代谢途径苯丙烷、类黄酮生物合成及激素信号转导途径的基因转录。此外,研究还鉴定到2个草甘膦响应密切相关的共表达模块,发现SHMT、RPM、At、PDR、ERF和GPT等多个潜在候选基因和转录因子在茶树抵御草甘膦逆境中发挥重要作用。
郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166.
GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA[J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
表1
参试样品的转录组数据的质量"
样本名称 Sample ID | 原始序列 Raw reads | 过滤序列 Clean reads | 过滤碱基 Clean bases | Q30 (%) | 总比对率 Total mapped (%) | 外显子 CDS (%) | 内含子 Intron (%) | 基因间区Intergenic (%) |
---|---|---|---|---|---|---|---|---|
0 d-1 | 51744132 | 51299070 | 7572138776 | 94.01 | 89.05 | 86.05 | 3.31 | 4.12 |
0 d-2 | 46244874 | 45818216 | 6794947547 | 94.05 | 89.23 | 86.93 | 2.63 | 3.95 |
0 d-3 | 44626020 | 44225824 | 6553924919 | 93.95 | 89.10 | 85.88 | 3.54 | 4.19 |
0.25 d-1 | 45064488 | 44614914 | 6599116801 | 93.83 | 87.83 | 84.28 | 3.83 | 4.62 |
0.25 d-2 | 43067110 | 42652694 | 6305386229 | 94.07 | 88.74 | 84.05 | 3.87 | 4.70 |
0.25 d-3 | 48340622 | 47899314 | 7086415271 | 93.78 | 88.49 | 84.08 | 4.18 | 4.57 |
1 d-1 | 41929042 | 41488506 | 6120727532 | 93.69 | 88.40 | 85.75 | 2.92 | 4.16 |
1 d-2 | 48077998 | 47713728 | 7065390194 | 94.14 | 88.63 | 85.69 | 3.52 | 4.16 |
1 d-3 | 42384792 | 42031890 | 6227498606 | 94.22 | 88.69 | 85.87 | 3.26 | 4.04 |
3 d-1 | 48203390 | 47847756 | 7076619275 | 94.13 | 89.21 | 84.08 | 5.28 | 4.23 |
3 d-2 | 55290358 | 54899776 | 8119654579 | 94.13 | 89.15 | 84.91 | 4.74 | 4.06 |
3 d-3 | 47899016 | 47516386 | 7037854655 | 93.80 | 88.67 | 85.40 | 4.16 | 3.96 |
7 d-1 | 51246042 | 50703198 | 7458204310 | 94.33 | 89.79 | 85.08 | 3.88 | 4.13 |
7 d-2 | 46843028 | 46469848 | 6887767322 | 93.98 | 87.69 | 85.01 | 4.18 | 4.12 |
7 d-3 | 52226524 | 51742808 | 7626325817 | 93.97 | 89.64 | 85.04 | 3.93 | 4.06 |
合计 Total | 713187436 | 706923928 | 104531971833 |
[1] | 王鹏杰, 岳川, 陈笛, 郑玉成, 郑知临, 林浥, 杨江帆, 叶乃兴. 茶树CsWRKY6、CsWRKY31和CsWRKY48基因的分离及表达分析. 浙江大学学报(农业与生命科学版), 2019, 45(1): 30-38. |
WANG P J, YUE C, CHEN D, ZHENG Y C, ZHENG Z L, LIN Y, YANG J F, YE N X. Isolation and expression analysis of CsWRKY6, CsWRKY31 and CsWRKY48 genes in tea plant. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 30-38. (in Chinese) | |
[2] | 唐杏燕, 邵增琅, 杨路成, 裴少芬, 岳鹏翔, 王晓霞. 茶园中草甘膦在靶标杂草和非靶标茶树中的吸收、转运、分布和代谢. 食品安全质量检测学报, 2018, 9(18): 140-145. |
TANG X Y, SHAO Z L, YANG L C, PEI S F, YUE P X, WANG X X. Uptake, translocation, distribution and metabolism of glyphosate in target weeds and non-target tea trees in tea garden. Journal of Food Safety Quality Inspection, 2018, 9(18): 140-145. (in Chinese) | |
[3] | 杨亚琴, 冯书惠, 胡永建, 李圆圆, 王会锋, 刘进玺, 钟红舰. 气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量. 茶叶科学, 2020, 40(1): 125-132. |
YANG Y Q, FENG S H, HU Y J, LI Y Y, WANG H F, LIU J X, ZHONG H J. Determination of glyphosate and aminomethylphosphonic acid residue in green tea by gas chromatography-mass spectrometry. Journal of Tea Science, 2020, 40(1): 125-132. (in Chinese) | |
[4] | 郭永春, 陈金发, 赵峰, 王淑燕, 王鹏杰, 周鹏, 欧阳立群, 金珊, 叶乃兴. 草甘膦及其代谢物氨甲基膦酸在茶树体中的分布研究. 茶叶科学, 2020, 40(4): 510-518. |
GUO Y C, CHEN J F, ZHAO F, WANG S Y, WANG P J, ZHOU P, OUYANG L Q, JIN S, YE N X. Study on the distribution of glyphosate and its metabolite aminomethylphosphonic acid in Camellia sinensis. Journal of Tea Science, 2020, 40(4): 510-518. (in Chinese) | |
[5] | 于惠林, 贾芳, 全宗华, 崔海兰, 李香菊. 施用草甘膦对转基因抗除草剂大豆田杂草防除、大豆安全性及杂草发生的影响. 中国农业科学, 2020, 53(6): 1166-1177. |
YU H L, JIA F, QUAN Z H, CUI H L, LI X J. Effects of glyphosate on weed control, soybean safety and weed occurrence in transgenic herbicide-resistant soybean. Scientia Agricultura Sinica, 2020, 53(6): 1166-1177. (in Chinese) | |
[6] |
JIANG L X, JIN L G, GUO Y, TAO B, QIU L J. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max). Biochemical and Biophysical Research Communications, 2013, 437(4): 544-549.
doi: 10.1016/j.bbrc.2013.06.112 |
[7] |
RAINIO M J, MARGUS A, VIRTANEN V, LINDSTRÖM L, SALMINEN J P, SAIKKONEN K, HELANDER M. Glyphosate- based herbicide has soil-mediated effects on potato glycoalkaloids and oxidative status of a potato pest. Chemosphere, 2020, 258: 127254.
doi: 10.1016/j.chemosphere.2020.127254 |
[8] |
MALAGODA M, OHM J, HOWATT K A, GREEN A, SIMSEK S. Effects of pre-harvest glyphosate use on protein composition and shikimic acid accumulation in spring wheat. Food Chemistry, 2020, 332: 127422.
doi: 10.1016/j.foodchem.2020.127422 |
[9] |
TONG M M, GAO W J, JIAO W, HOU R Y. Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646.
doi: 10.1021/acs.jafc.7b02474 |
[10] | 高万君, 张永志, 童蒙蒙, 马慧勤, 钱珊珊, 王天雨, 李叶云, 吴慧平, 侯如燕. 茶园常用除草剂田间药效试验与残留动态. 茶叶科学, 2019, 39(5): 587-594. |
GAO W J, ZHANG Y Z, TONG M M, MA H Q, QIAN S S, WANG T Y, LI Y Y, WU H P, HOU R Y. Weeds control effect and residues of several herbicides in tea gardens. Journal of Tea Science, 2019, 39(5): 587-594. (in Chinese) | |
[11] | 高万君, 李叶云, 侯如燕. 茶叶中草甘膦残留现状与对策. 中国茶叶, 2021, 43(4): 20-24. |
GAO W J, LI Y Y, HOU R Y. Status and countermeasures of glyphosate residues in tea. China Tea, 2021, 43(4): 20-24. (in Chinese) | |
[12] | 郭永春, 王淑燕, 王鹏杰, 陈金发, 周鹏, 欧阳立群, 赵峰, 叶乃兴. 草甘膦对茶树叶片主要生化成分的影响. 天然产物研究与开发, 2021, 33(3): 394-401. |
GUO Y C, WANG S Y, WANG P J, CHEN J F, ZHOU P, OUYANG L Q, ZHAO F, YE N X. The effect of glyphosate on the main biochemical components of tea leaves. Natural Product Research and Development, 2021, 33(3): 394-401. (in Chinese) | |
[13] |
WANG P J, YU J X, JIN S, CHEN S, YUE C, WANG W L, GAO S L, CAO H L, ZHENG Y C, GU M Y, CHEN X J, SUN Y, GUO Y Q, YANG J F, ZHANG X T, YE N X. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research, 2021, 8(1): 107.
doi: 10.1038/s41438-021-00542-x |
[14] |
TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.
doi: 10.1038/nprot.2012.016 |
[15] |
LI B, DEWEY C N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323 |
[16] |
ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 |
[17] |
XIE C, MAO X Z, HUANG J J, DING Y, WU J M, DONG S, KONG L, GAO G, LI C Y, WEI L P. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483 |
[18] | CHEN C, XIA R, CHEN H, XIA T. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. BioRxiv, 2018. |
[19] |
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 |
[20] | KOHL M, WIESE S, WARSCHEID B. Cytoscape: Software for visualization and analysis of biological networks. Methods in Molecular Biology, 2011, 696: 291-303. |
[21] | 王鹏杰, 曹红利, 陈丹, 陈笛, 陈桂信, 杨江帆, 叶乃兴. 茶树脂肪酸去饱和酶家族基因的克隆与表达分析. 园艺学报, 2020, 47(6): 1141-1152. |
WANG P J, CAO H L, CHEN D, CHEN D, CHEN G X, YANG J F, YE N X. Cloning and expression analysis of fatty acid desaturase family genes in Camellia sinensis. Acta Horticulturae Sinica, 2020, 47(6): 1141-1152. (in Chinese) | |
[22] |
WU Z J, TIAN C, JIANG Q A, LI X H, ZHUANG J. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Scientific Reports, 2016, 6: 19748.
doi: 10.1038/srep19748 |
[23] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[24] |
ZELAYA I A, ANDERSON J A H, OWEN M D K, LANDES R D. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: Models in glyphosate-resistant and -susceptible crops. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2202-2212.
doi: 10.1021/jf1043426 |
[25] | 郭永春, 王鹏杰, 谷梦雅, 王淑燕, 赵峰, 叶乃兴. 茶树5-烯醇式丙酮酰莽草酸-3-磷酸合成酶基因的克隆及表达. 应用与环境生物学报, 2020. https://doi.org/10.19675/j.cnki.1006-687X.2020.10031. |
GUO Y C, WANG P J, GU M Y, WANG S Y, ZHAO F, YE N X. Cloning and expression of 5-enolpyruvylshikimate-3-phosphate synthase gene from tea plants. Chinese Journal of Applied and Environmental Biology, 2020. https://doi.org/10.19675/j.cnki.1006-687X.2020.10031. (in Chinese) | |
[26] | 孙平, 章国营, 向萍, 林金科, 赖钟雄. 茶树中莽草酸途径DHD/SDH基因的表达调控. 应用与环境生物学报, 2018, 24(2): 322-327. |
SUN P, ZHANG G Y, XIANG P, LIN J K, LAI Z X. Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis). Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 322-327. (in Chinese) | |
[27] |
ACHARY V M M, SHERI V, MANNA M, PANDITI V, BORPHUKAN B, RAM B, AGARWAL A, FARTYAL D, TEOTIA D, MASAKAPALLI S K, AGRAWAL P K, REDDY M K. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. Plant Biotechnology Journal, 2020, 18(12): 2504-2519.
doi: 10.1111/pbi.v18.12 |
[28] | 陈延儒. 采后硝普钠处理对苹果果实品质、莽草酸和苯丙烷代谢途径的影响[D]. 锦州: 渤海大学, 2019. |
CHEN Y R. Effect of postharvest sodium nitroprusside treatment on the quality, shikimate and phenylpropanoid pathway of apple fruit[D]. Jinzhou: Bohai University, 2019. (in Chinese) | |
[29] |
ZHAI R R, YE S H, ZHU G F, LU Y T, YE J, YU F M, CHU Q R, ZHANG X M. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing. BMC Genomics, 2020, 21(1): 238.
doi: 10.1186/s12864-020-6637-6 |
[30] |
MESNAGE R, OESTREICHER N, POIRIER F, NICOLAS V, BOURSIER C, VÉLOT C. Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. Environmental Research, 2020, 182: 109116.
doi: 10.1016/j.envres.2020.109116 |
[31] |
MENG J, WANG B, HE G, WANG Y, TANG X F, WANG S M, MA Y B, FU C X, CHAI G H, ZHOU G K. Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3284-3291.
doi: 10.1021/acs.jafc.8b06355 |
[32] |
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209.
doi: 10.1111/jipb.v63.1 |
[33] |
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46(7): 1033-1051.
doi: 10.3724/SP.J.1006.2020.94130 |
QIN T Y, SUN C, BI Z Z, LIANG W J, LI P C, ZHANG J L, BAI J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94130 |
|
[34] |
ZHAO H, LI G L, GUO D Z, WANG Y, LIU Q X, GAO Z, WANG H F, LIU Z G, GUO X Q, XU B H. Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. The Science of the Total Environment, 2020, 744: 140819.
doi: 10.1016/j.scitotenv.2020.140819 |
[35] | DOGRAMACI M, ANDERSON J V, CHAO W S, HORVATH D P, HERNANDEZ A G, MIKEL M A, FOLEY M E. Foliar glyphosate treatment alters transcript and hormone profiles in crown buds of leafy spurge and induces dwarfed and bushy phenotypes throughout its perennial lifecycle. The Plant Genome, 2017, 10(3): 98. |
[1] | 林馨颖,王鹏杰,杨如兴,郑玉成,陈潇敏,张磊,邵淑贤,叶乃兴. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845. |
[2] | 李志玲,李香菊,崔海兰,于海燕,陈景超. 牛筋草EPSPS酶联免疫试剂盒的研发及应用[J]. 中国农业科学, 2022, 55(24): 4851-4862. |
[3] | 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证[J]. 中国农业科学, 2021, 54(8): 1751-1760. |
[4] | 陈志,张逸,路钦越,郭佳禾,梁艳,张明怡星,杨章平. 茶树油对LPS诱导的奶牛乳腺炎的作用及其机制[J]. 中国农业科学, 2021, 54(14): 3124-3133. |
[5] | 于惠林,贾芳,全宗华,崔海兰,李香菊. 施用草甘膦对转基因抗除草剂大豆田杂草防除、大豆安全性及杂草发生的影响[J]. 中国农业科学, 2020, 53(6): 1166-1177. |
[6] | 肖罗丹, 唐磊, 王伟东, 高岳芳, 黄伊凡, 孟阳, 杨亚军, 肖斌. 茶树CsWRKYIIcs转录因子的克隆及功能分析[J]. 中国农业科学, 2020, 53(12): 2460-2476. |
[7] | 陈华峰,田可川,黄锡霞,阿布来提·苏来曼,何军敏,田月珍,徐新明,付雪峰,赵冰茹,朱桦,哈尼克孜·吐拉甫. 苏博美利奴羊毛囊发育相关lncRNA与mRNA共表达网络的构建[J]. 中国农业科学, 2019, 52(19): 3471-3484. |
[8] | 刘玉飞,金基强,姚明哲,陈亮. 茶树咖啡碱合成酶基因稀有等位变异TCS1g的筛选、克隆及功能[J]. 中国农业科学, 2019, 52(10): 1772-1783. |
[9] | 闫静,王晓蕾,张玉池,张庆玲,王建,强胜,宋小玲. 抗除草剂转基因油菜与野芥菜的抗性回交3代子3代的适合度[J]. 中国农业科学, 2018, 51(1): 105-118. |
[10] | 冯一璐,傅晓斌,吴帆,崔宏春,李红亮. 茶尺蠖信息素结合蛋白PBP2的基因克隆、原核表达及其结合功能[J]. 中国农业科学, 2017, 50(3): 504-512. |
[11] | 薄晓培,王梦馨,崔 林,王金和,韩宝瑜. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价[J]. 中国农业科学, 2016, 49(19): 3807-3817. |
[12] | 王玉春,郝心愿,黄玉婷,岳川,王博,曹红利,王璐,王新超,杨亚军,肖斌. 中国主要茶区茶树炭疽菌系统发育学[J]. 中国农业科学, 2015, 48(24): 4924-4935. |
[13] | 孙越,刘秀霞,李丽莉,官赟赟,张举仁. 兼抗虫、除草剂、干旱转基因玉米的获得和鉴定[J]. 中国农业科学, 2015, 48(2): 215-228. |
[14] | 王霞1, 2, 4, 马燕斌2, 吴霞2, 沈志成3, 林朝阳3, 李朋波2, 孙璇2, 王新胜2, 李燕娥2, 李贵全1. 转G10aroA棉花株系的获得及分子生物学鉴定[J]. 中国农业科学, 2014, 47(6): 1051-1057. |
[15] | 岳川,曹红利,周艳华,王璐,郝心愿,王新超,杨亚军. 茶树谷胱甘肽还原酶基因CsGRs的克隆与表达分析[J]. 中国农业科学, 2014, 47(16): 3277-3289. |
|