中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 134-151.doi: 10.3864/j.issn.0578-1752.2022.01.012
收稿日期:
2021-03-15
接受日期:
2021-06-08
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
陶建敏
作者简介:
徐献斌,E-mail: 基金资助:
XU XianBin(),GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin(
)
Received:
2021-03-15
Accepted:
2021-06-08
Online:
2022-01-01
Published:
2022-01-07
Contact:
JianMin TAO
摘要:
【目的】分析参与调控ABA促进葡萄着色的相关基因,探讨ABA促进葡萄果实花青苷积累的分子机制。【方法】以‘红巴拉多’葡萄为试材,在转色前期(约花后6周)使用300 mg∙L-1 ABA对果穗进行浸果处理,以清水处理为对照。观察表型,并利用超高液相色谱质谱联用仪(UPLC-MS)测定花青苷组分及含量,再利用转录组测序技术从分子水平对ABA促进花青苷积累的机制进行生物信息学分析。【结果】外源ABA处理3 d后,葡萄果实着色明显加深,花青苷种类和含量增多,其中芍药素3-O-葡萄糖苷、锦葵色素3-O-葡萄糖苷两种单体花青苷含量增加最为显著。分析ABA处理18 h和3 d后葡萄果实转录水平的差异,并通过KEGG富集分析发现了11个ABA信号通路基因以及52个与花青苷生物合成和转运相关的基因差异表达,它们均在外源ABA处理后表达上调。通过将差异基因与葡萄转录因子库进行比对,共发现297个转录因子差异表达。进一步分析差异转录因子表达模式,筛选与VvMYBA1表达模式相近的转录因子,发现15个MYB、bHLH、bZIP、NAC、Dof、HD-ZIP等家族的转录因子,其可能参与调控花青苷生物合成。启动子顺式作用元件分析表明,大部分筛选到的差异基因启动子中含有ABRE元件,说明这些差异表达基因的启动子可能为ABA诱导型启动子。对部分候选基因的表达模式进行实时荧光定量(qRT-PCR)分析,证实了RNA-seq的准确性。【结论】ABA促进葡萄花青苷积累涉及11个ABA信号转导、52个花青苷合成和转运相关基因,15个转录因子可能参与调控了这一生物过程。研究结果为揭示ABA促进葡萄花青苷积累的分子机制提供了一定基础。
徐献斌,耿晓月,李慧,孙丽娟,郑焕,陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因[J]. 中国农业科学, 2022, 55(1): 134-151.
XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape[J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
表1
荧光定量PCR引物设计序列"
基因名称 Gene name | 正向引物 Forward primer (5′→3′) | 反向引物 Reverse primer (5′→3′) | NCBI登录号 Accession number |
---|---|---|---|
VvPAL | GTGAGGGAAGAACTGGGAGC | AATGAGCTTCCCTGCACACA | LOC100233012 |
VvCHS | CCGAGAAGTTACGCTCCACA | CTTCCTCAGCCGACTTCCTC | LOC100258106 |
VvC4H | GCCCATTTCTCCCAATATAGCAC | GTATGGAGAGAGGCCCTGGA | LOC100267215 |
VvF3H | CAAGGTGGCCTACAACGACT | AGGCCTCCACGATTTTCCTG | LOC100233079 |
VvUFGT | GAGGTCCTAGCACATGAGGC | CCTCCCATTGAGCCTTTGGT | LOC100233099 |
VvFAOMT | CAAAACTGAAGCCCTCACAAAGT | TCGACAGGGACATTCATCAGG | LOC100233134 |
VvGST | TGGAGGTTGAATCCCAACAATATCA | ACACATCCAGAACCTTACCCA | LOC100242506 |
VvMATE | AATTTTAATGGGTGGGAGGCCA | GAGAGACTGAGAGACTGCGAC | LOC 100250967 |
VvMYB4 | ACAGCACTGGCGTCAAGAAT | TCTGCGACTGCTGGGAAATC | LOC100254518 |
VvNAC29 | GCCCCGTATCCATTATCCCC | GTAGCTCGGTTGGGTCTAGC | LOC104879728 |
VvDof5.6 | ATGCTCACTTGCTCCAGACC | TACCTTGGCTGAGAGAGGCT | LOC100265549 |
VvHD-ZIP | CCTGCAAAGAGGATCACCAT | GGTGCAATTCCCCGTAGTTA | LOC100245524 |
VvActin | TACAATTCCATCATGAAGTGTGATG | TTAGAAGCACTTCCTGTGAACAATG | LOC100246825 |
表2
外源ABA处理对‘红巴拉多'葡萄果皮花青苷含量和组分的影响"
成分 Component | 保留时间 Retention time (min) | 分子/碎片 Molecular/Fragmention (m/z) | 对照 Control (mg∙kg-1) | ABA处理 ABA treatment (mg∙kg-1) |
---|---|---|---|---|
飞燕草素 3-O-(6''-p-香豆酰葡萄糖苷) Delphinidin 3-O-(6''-p-coumaroyl-glucoside) | 3.02 | 465.10/303.05 | 1.24±0.19 | 1.23±0.25 |
矮牵牛素 3-O-葡萄糖苷 Petunidin 3-O-glucoside | 4.18 | 479.12/301.07 | 0.00 | 1.5±0.20** |
芍药素 3-O-葡萄糖苷 Peonidin 3-O-glucoside | 4.76 | 463.12/301.07 | 1.46±0.25 | 18.08±1.95** |
锦葵色素 3-O-葡萄糖苷 Malvidin 3-O-glucoside | 5.02 | 493.13/331.08 | 1.31±0.30 | 11.82±1.59** |
天竺葵素 3-O-(6''-p-香豆酰葡萄糖苷) Cyanidin 3-O-(6''-p-coumaroyl-glucoside) | 8.97 | 595.15/287.05 | 0.00 | 1.31±0.13** |
芍药素 3-O-(6''-p-香豆酰葡萄糖苷) Peonidin 3-O-(6''-p-coumaroyl-glucoside) | 9.94 | 639.17/317.06 | 0.00 | 3.72±0.25** |
总花青苷 Total anthocyanins | / | / | 4.23±0.28 | 37.5±2.36** |
表3
转录测序数据结果统计"
样本 Sample | 原始序列 Number of raw reads | 干净序列 Number of clean reads | 有效比例 Effective reads ratio (%) | 比对序列 Mapped reads (Mapping rate,%) | Q30值 Q30 (%) |
---|---|---|---|---|---|
ABA18h-rep1 | 46698448 | 45502062 | 97.44% | 42661098 (93.76) | 94.55 |
ABA 18h-rep2 | 42356456 | 41455998 | 97.87% | 38818882 (93.64) | 94.56 |
ABA 18h-rep3 | 47460348 | 46189130 | 97.32% | 43310745 (93.77) | 94.84 |
CK 18h-rep1 | 45626112 | 44517058 | 97.57% | 41826560 (93.96) | 94.73 |
CK 18h-rep2 | 46629670 | 44922268 | 96.34% | 42176033 (93.89) | 95.04 |
CK 18h-rep3 | 46173614 | 44415392 | 96.19% | 41599095 (93.66) | 94.91 |
ABA 3d-rep1 | 48528740 | 47335738 | 97.54% | 44167501 (93.31) | 95.09 |
ABA 3d-rep2 | 45802840 | 44487648 | 97.13% | 41636081 (93.59) | 95.33 |
ABA 3d-rep3 | 46843568 | 45789804 | 97.75% | 42741325 (93.34) | 94.74 |
CK 3d-rep1 | 41352252 | 40054402 | 96.86% | 36726263 (91.69) | 94.33 |
CK 3d-rep2 | 46588212 | 45041810 | 96.68% | 41795220 (92.79) | 94.3 |
CK 3d-rep3 | 46096744 | 44484560 | 96.50% | 40918000 (91.98) | 94.44 |
表4
差异基因2000 bp启动子序列中ABRE作用元件数量统计"
NCBI登录号 Accession number | FPKM值 FPKM Value | ABRE元件数量 The number of ABREs | 基因注释 Gene annotation | |||
---|---|---|---|---|---|---|
ABA18 h | CK18 h | ABA3 d | CK3 d | |||
LOC100233012 | 22.86 | 2.99 | 146.17 | 11.75 | 2 | PAL |
LOC100241575 | 27.27 | 3.94 | 146.49 | 10.51 | 1 | PAL |
LOC100241377 | 15.24 | 5.23 | 13.39 | 7.70 | 4 | PAL |
LOC100854997 | 1.09 | 0.24 | 1.48 | 0.87 | 6 | PAL |
LOC100245997 | 0.94 | 0.48 | 1.43 | 0.35 | 6 | PAL |
LOC100253493 | 72.53 | 6.17 | 23.01 | 2.61 | 3 | C4H |
LOC100267215 | 247.58 | 1.83 | 32.27 | 1.09 | 1 | C4H |
LOC100254698 | 32.99 | 12.71 | 23.72 | 13.25 | 4 | 4CL |
LOC100245991 | 25.27 | 12.93 | 82.87 | 30.48 | 4 | 4CL |
LOC100253166 | 1.81 | 0.76 | 0.54 | 0.39 | 3 | CHS |
LOC100263437 | 3.02 | 0.16 | 3.19 | 0.91 | 3 | CHS |
LOC100258106 | 843.21 | 485.95 | 3031.14 | 577.81 | 4 | CHS |
LOC100262321 | 3.25 | 1.53 | 3.78 | 1.58 | 3 | CHS |
LOC100264844 | 3.21 | 1.77 | 5.39 | 2.38 | 1 | CHS |
LOC100232843 | 187.92 | 57.83 | 509.38 | 113.44 | 0 | CHS |
LOC100263443 | 19.00 | 5.73 | 54.48 | 10.52 | 5 | CHS |
LOC100241164 | 2.14 | 0.39 | 1.66 | 1.34 | 0 | CHS |
LOC100233078 | 410.22 | 213.33 | 646.48 | 305.87 | 4 | CHI |
LOC100255217 | 255.72 | 183.82 | 637.94 | 284.91 | 4 | CHI |
LOC100232999 | 87.38 | 67.10 | 165.37 | 80.38 | 0 | F3'H |
LOC100261319 | 5.14 | 0.55 | 15.12 | 2.11 | 4 | F3'5'H |
LOC109122765 | 2.03 | 0.43 | 3.94 | 0.30 | 2 | F3'5'H |
LOC100243414 | 1.36 | 0.11 | 3.70 | 0.32 | 4 | F3'5'H |
LOC104877273 | 1.45 | 0.28 | 4.23 | 0.52 | 4 | F3'5'H |
LOC100241335 | 3.21 | 0.40 | 4.88 | 0.60 | 2 | F3'5'H |
LOC100233079 | 174.69 | 30.14 | 459.98 | 62.82 | 4 | F3H |
LOC100253950 | 526.93 | 291.78 | 592.54 | 357.45 | 5 | F3H |
LOC100233141 | 245.66 | 67.49 | 320.10 | 94.11 | 3 | DFR |
LOC100233142 | 493.12 | 246.34 | 1503.28 | 488.51 | 5 | LDOX |
LOC100233099 | 410.21 | 94.82 | 699.90 | 221.37 | 1 | UFGT |
LOC100852631 | 11.36 | 5.04 | 5.14 | 1.38 | 3 | UFGT |
LOC100264341 | 10.81 | 3.90 | 3.13 | 1.01 | 0 | UFGT |
LOC100257268 | 31.65 | 18.50 | 4.13 | 2.95 | 3 | UFGT |
LOC100255538 | 10.79 | 7.27 | 4.29 | 1.60 | 4 | UFGT |
LOC100265929 | 1.54 | 0.62 | 0.88 | 0.30 | 2 | UFGT |
NCBI登录号 Accession number | FPKM值 FPKM Value | ABRE元件数量 The number of ABREs | 基因注释 Gene annotation | |||
ABA18 h | CK18 h | ABA3 d | CK3 d | |||
LOC100854172 | 103.23 | 23.28 | 67.84 | 21.74 | 1 | OMT |
LOC100233134 | 70.74 | 7.07 | 203.04 | 22.29 | 5 | FAOMT |
LOC100232862 | 105.44 | 36.52 | 55.05 | 25.23 | 2 | OMT |
LOC100232921 | 10.99 | 3.31 | 16.53 | 4.91 | 2 | OMT |
LOC100251744 | 6.90 | 3.62 | 4.87 | 3.39 | 0 | OMT |
LOC100243978 | 418.54 | 100.61 | 705.85 | 203.97 | 6 | OMT |
LOC100242506 | 38.68 | 4.88 | 72.67 | 6.66 | 0 | GST |
LOC100264838 | 8.74 | 1.18 | 3.02 | 0.60 | 4 | GST |
LOC100245065 | 19.94 | 8.57 | 17.88 | 14.00 | 4 | GST |
LOC100232976 | 190.44 | 68.50 | 1357.36 | 115.94 | 0 | GST4 |
LOC100233043 | 231.50 | 154.62 | 241.01 | 199.76 | 0 | GST |
LOC100852746 | 3.00 | 1.06 | 1.65 | 1.09 | 1 | GST |
LOC104878920 | 5.29 | 1.65 | 5.94 | 1.69 | 1 | 3AT |
LOC100252075 | 9.37 | 6.63 | 5.60 | 4.10 | 1 | ABC |
LOC100268149 | 75.98 | 92.38 | 114.89 | 97.89 | 11 | VvAM1 |
LOC100250967 | 162.57 | 41.82 | 545.35 | 96.32 | 3 | MATE |
LOC100255800 | 16.82 | 2.83 | 25.14 | 9.63 | 5 | MATE1 |
LOC100250616 | 38.07 | 11.73 | 37.19 | 17.00 | 2 | MATE2 |
LOC100233098 | 31.24 | 2.48 | 39.68 | 9.14 | 13 | MYBA1 |
LOC100232838 | 93.45 | 8.01 | 132.29 | 18.05 | 6 | MYBA2 |
LOC100853472 | 166.39 | 8.79 | 333.69 | 23.14 | 6 | MYBA3 |
LOC100233136 | 100.72 | 69.01 | 108.09 | 99.71 | 2 | MYBC2-L1 |
LOC100254518 | 79.92 | 36.44 | 120.88 | 62.90 | 1 | MYB4 |
LOC100251098 | 46.68 | 29.43 | 47.02 | 37.98 | 1 | MYC1 |
LOC100260656 | 5.43 | 1.27 | 3.16 | 1.26 | 6 | MYB |
LOC100250940 | 6.10 | 1.08 | 2.67 | 1.14 | 2 | MYB |
LOC100260647 | 3.70 | 0.34 | 4.18 | 0.97 | 3 | MYB |
LOC104879728 | 34.16 | 7.04 | 18.04 | 4.46 | 8 | NAC |
LOC100243434 | 61.74 | 40.82 | 53.52 | 33.84 | 2 | ABF1 |
LOC100232889 | 29.63 | 18.76 | 36.56 | 22.09 | 6 | ABF2 |
LOC100258873 | 108.20 | 55.20 | 113.90 | 72.46 | 2 | bZIP |
LOC100265549 | 37.85 | 17.70 | 25.76 | 15.81 | 5 | Dof |
LOC100245524 | 51.19 | 6.03 | 32.12 | 5.14 | 6 | HD-ZIP |
[1] |
MEDOUNI-ADRAR S, BOULEKBACHE-MAKHLOUF L, CADOT Y, MEDOUNI-HAROUNE L, DAHMOUNE F, MAKOUKHE A, MADANI K. Optimization of the recovery of phenolic compounds from Algerian grape by products. Industrial Crops and Products, 2015, 77: 123-132.
doi: 10.1016/j.indcrop.2015.08.039 |
[2] |
PEPPI M C, FIDELIBUS M W, DOKOOZLIAN N K. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. The Journal of Horticultural Science and Biotechnology, 2007, 82(2): 304-310.
doi: 10.1080/14620316.2007.11512233 |
[3] |
AMIRI M E, FALLAHI E, MIRJALILI M. Effects of abscisic acid or ethephon at veraison on the maturity and quality of ‘Beidaneh Ghermez’ grapes. The Journal of Horticultural Science and Biotechnology, 2009, 84(6): 660-664.
doi: 10.1080/14620316.2009.11512582 |
[4] | VILLALOBOS-GONZÁLEZ L, PEÑA-NEIRA A, IBÁÑEZ F, PASTENES C. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content. Plant Physiology and Biochemistry, 2016, 105: 213-223. |
[5] |
FORLANI S, MASIERO S, MIZZOTTI C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens. Journal of Experimental Botany, 2019, 70(11): 2993-3006.
doi: 10.1093/jxb/erz112 |
[6] |
CELIA C M, FIDELIBUS M W, CRISOSTO C H. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biology and Technology, 2007, 46(3): 237-241.
doi: 10.1016/j.postharvbio.2007.05.017 |
[7] | 李芳菲, 王莎, 谷世超, 程大伟, 顾红, 李明, 陈锦永, 杨英军. 叶面喷施ABA和PDJ对‘巨峰’葡萄果实着色及品质的影响. 果树学报, 2020, 37(3): 362-370. |
LI F F, WANG S, GU S C, CHENG D W, GU H, LI M, CHEN J Y, YANG Y J. Effects of foliar application of ABA and PDJ on the coloration and quality of ‘Kyoho’ grape berry. Journal of Fruit Science, 2020, 37(3): 362-370. (in Chinese) | |
[8] | 张培安, 王壮伟, 蔡斌华, 文习成, 田亮, 王晨, 贾海锋, 房经贵. ABA对‘巨峰’葡萄采后成熟关键基因表达的影响. 园艺学报, 2018, 45(6): 1067-1080. |
ZHANG P A, WANG Z W, CAI B H, WEN X C, TIAN L, WANG C, JIA H F, FANG J G. Effects of ABA on the expression of key genes in postharvest fruit of ‘Kyoho’ grapevine. Acta Horticulturae Sinica, 2018, 45(6): 1067-1080. (in Chinese) | |
[9] | 马文瑶, 程大伟, 顾红, 黄海娜, 陈锦永, 杨英军. 脱落酸(ABA)促进果实着色研究进展. 果树学报, 2018, 35(8): 1016-1026. |
MA W Y, CHENG D W, GU H, HUANG H N, CHEN J Y, YANG Y J. Advances in ABA promoting fruit coloration. Journal of Fruit Science, 2018, 35(8): 1016-1026. (in Chinese) | |
[10] |
KATAYAMA-IKEGAMI A, SAKAMOTO T, SHIBUYA K, KATAYAMA T, GAO-TAKAI M. Effects of abscisic acid treatment on berry coloration and expression of flavonoid biosynthesis genes in grape. American Journal of Plant Sciences, 2016, 7(9): 1325-1336.
doi: 10.4236/ajps.2016.79127 |
[11] |
KOYAMA R, ROBERTO S R, DE SOUZA R T, BORGES W F S, ANDERSON M, WATERHOUSE A L, CANTU D, FIDELIBUS M W, BLANCO-ULATE B. Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region. Frontiers in Plant Science, 2018, 9: 323.
doi: 10.3389/fpls.2018.00323 |
[12] |
GAO Z, LI Q, LI J, CHEN Y J, LUO M, LI H, WANG J Y, WU Y S, DUAN S Y, WANG L, SONG S R, XU W P, ZHANG C X, WANG S P, MA C. Characterization of the ABA receptor VlPYL1 that regulates anthocyanin accumulation in grape berry skin. Frontiers in Plant Science, 2018, 9: 592.
doi: 10.3389/fpls.2018.00592 |
[13] |
JIA H R, ZHANG Z B, ZHANG S H, FU W H, SU L Y, FANG J G, JIA H F. Effect of the methylation level on the grape fruit development process. Journal of Agricultural and Food Chemistry, 2020, 68(7): 2099-2115.
doi: 10.1021/acs.jafc.9b07740 |
[14] |
ZHANG L, XU Y S, JIA Y, WANG J Y, YUAN Y, YU Y, TAO J M. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape. Horticulture Research, 2016, 3: 16037.
doi: 10.1038/hortres.2016.37 |
[15] |
HU B, LAI B, WANG D, LI J Q, CHEN L H, QIN Y Q, WANG H C, QIN Y H, HU G B, ZHAO J T. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis. Plant and Cell Physiology, 2018, 60(2): 448-461.
doi: 10.1093/pcp/pcy219 |
[16] |
LIVAL K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[17] |
CASTELLARIN S D, GASPERO G D, MARCONI R, NONIS A, PETERLUNGER E, PAILLARD S, ADAM-BLNODON A F, TESTOLIN R. Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics, 2006, 7: 12.
doi: 10.1186/1471-2164-7-12 |
[18] |
CRUPI P, ALBA V, MASI G, CAPUTO A R, TARRICONE L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Research International, 2019, 126: 108667.
doi: 10.1016/j.foodres.2019.108667 |
[19] |
GIRIBALDI M, GÉNY L, DELROT S, SCHUBERT A. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. Journal of Experimental Botany, 2010, 61(9): 2447-2458.
doi: 10.1093/jxb/erq079 |
[20] |
LIOTENBERG S, NORTH H, MARION-POLL A. Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiology and Biochemistry, 1999, 37(5): 341-350.
doi: 10.1016/S0981-9428(99)80040-0 |
[21] |
ZHANG M, LENG P, ZHANG G L, LI X X. Cloning and functional analysis of 9-Cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 2009, 166(12): 1241-1252.
doi: 10.1016/j.jplph.2009.01.013 |
[22] |
HUBBARD K E, NISHIMURA N, HITOMI K, GETZOFF E D, SCHROEDER J I. Early abscisic acid signal transduction mechanisms: Newly discovered components and newly emerging questions. Genes & Development, 2010, 24(16): 1695-1708.
doi: 10.1101/gad.1953910 |
[23] |
BONEH U, BITON I, ZHENG C L, SCHWARTZ A, BEN-ARI G. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Reports, 2012, 31(2): 311-321.
doi: 10.1007/s00299-011-1166-z |
[24] |
BONEH U, BITON I, SCHWARTZ A, BEN-ARI G. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 2012, 187: 89-96.
doi: 10.1016/j.plantsci.2012.01.015 |
[25] |
SPARVOLI F, MARTIN C, SCIENZA A, GAVAZZI G, TONELLI C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Molecular Biology, 1994, 24(5): 743-755.
doi: 10.1007/BF00029856 |
[26] |
IBRAHIM R K, BRUNEAU A, BANTIGNIES B. Plant O- methyltransferases: molecular analysis, common signature and classification. Plant Molecular Biology, 1998, 36(1): 1-10.
doi: 10.1023/A:1005939803300 |
[27] |
NAKAYAMA T, SUZUKI H, NISHINO T. Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. Journal of Molecular Catalysis B Enzymatic, 2003, 23(2): 117-132.
doi: 10.1016/S1381-1177(03)00078-X |
[28] |
CONN S, CURTIN C, BEZIER A, FRANCO C, ZHANG W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59(13): 3621-3634.
doi: 10.1093/jxb/ern217 |
[29] |
PÉREZ-DÍAZ R, RYNGAJLLO M, PÉREZ-DÍAZ J, PEÑA-CORTÉS H, CASARETTO J A, GONZÁLEZ-VILLANUEVA E, RUIZ-LARA S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Reports, 2014, 33(7): 1147-1159.
doi: 10.1007/s00299-014-1604-9 |
[30] |
ZHAO J. Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science, 2015, 20(9): 576-585.
doi: 10.1016/j.tplants.2015.06.007 |
[31] | RINALDO A R, CAVALLINI E, JIA Y, MOSS S M A, MCDAVID D A J, HOOPER L C, ROBINSON S P, TORNIELLI G B, ZENONI S, FORD C M, BOSS P K, WALKER A R. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, 2015, 169(3): 1897-1916. |
[32] | 牛铁泉, 董燕梅, 刘海霞, 张小军, 高燕, 张鹏飞, 梁长梅, 温鹏飞. 葡萄果实MYBA1与UFGT、DFR的作用机制. 中国农业科学, 2018, 51(12): 2368-2377. |
NIU T Q, DONG Y M, LIU H X, ZHANG X J, GAO Y, ZHANG P F, LIANG C M, WEN P F. The regulations of the MYBA1 in UFGT and DFR from the grape berries. Scientia Agricultura Sinica, 2018, 51(12): 2368-2377. (in Chinese) | |
[33] |
FOURNIER-LEVEL A, LE CUNFF L, GOMEZ C, DOLIGEZ A, AGEORGES A, ROUX C, BERTRAND Y, SOUQUET J M, CHEYNIER V, THIS P. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study. Genetics, 2009, 183(3): 1127-1139.
doi: 10.1534/genetics.109.103929 |
[34] |
MATUS J T, LOYOLA R, VEGA A, PEÑA-NEIRA A, BORDEU E, ARCE-JOHNSON P, ALCALDE J A. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 2009, 60(3): 853-867.
doi: 10.1093/jxb/ern336 |
[35] | IMENE H, SIMON C, JEREMY P, CELINE L, STEFAN C, SERGE D, VIRGINIE L, JOCHEN B. The basic Helix-Loop-Helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant, 2010(3): 509-523. |
[36] |
XIE S, QIAO X L, CHEN H W, NAN H, ZHANG Z W. Coordinated regulation of grape berry flesh color by transcriptional activators and repressors. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11815-11824.
doi: 10.1021/acs.jafc.9b05234 |
[37] |
PÉREZ-DÍAZ J R, PÉREZ-DÍAZ J, MADRID-ESPINOZA J, GONZÁLEZ-VILLANUEVA E, MORENO Y, RUIZ-LARA S. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 2016, 90(1): 63-76.
doi: 10.1007/s11103-015-0394-y |
[38] |
ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 2014, 26(3): 962-980.
doi: 10.1105/tpc.113.122069 |
[39] |
ZHOU H, KUI L W, WANG F R, ESPLEY R V, REN F, ZHAO J B, OGUTU C, HE H P, JIANG Q, ALLAN A C, HAN Y P. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. The New Phytologist, 2019, 221(4): 1919-1934.
doi: 10.1111/nph.2019.221.issue-4 |
[40] | ALBERT N W. Subspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in forage legumes. Frontiers in Plant Science, 2015, 6: 1165. |
[41] | GU R, LIU X F, ZHAO W S, YAN S S, SUN L H, WU B N, ZHANG X L. Functional characterization of the promoter and second intron of CUM1 during flower development in cucumber (Cucumis sativus L.). Horticultural Plant Journal, 2018(3): 103-110. |
[42] | 程寅胜, 陈健秋, 陈丹, 吕佳红, 张俊, 张绍铃, 伍涛, 张虎平. 梨糖转运相关基因PbTMT4启动子克隆及功能分析. 园艺学报, 2019, 46(1): 25-36. |
CHENG Y S, CHEN J Q, CHEN D, LÜ J H, ZHANG J, ZHANG S L, WU T, ZHANG H P. Cloning and functional analysis of the promoter of PbTMT4 gene related sugar transport in pear. Acta Horticulturae Sinica, 2019, 46(1): 25-36. (in Chinese) | |
[43] |
FUJITA Y, FUJITA M, SATOH R, MARUYAMA K, PARVEZ M M, SEKI M, HIRATSU K, OHME-TAKAGI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell, 2005, 17(12): 3470-3488.
doi: 10.1105/tpc.105.035659 |
[44] |
JEONG S T, GOTO-YAMAMOTO N, KOBAYASHI S, ESAKA M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science, 2004, 167(2): 247-252.
doi: 10.1016/j.plantsci.2004.03.021 |
[45] |
ZHAI X W, ZHANG Y S, KAI W B, LIANG B, JIANG L, DU Y W, WANG J A, SUN Y F, LENG P. Variable responses of two VlMYBA gene promoters to ABA and ACC in Kyoho grape berries. Journal of Plant Physiology, 2017, 211: 81-89.
doi: 10.1016/j.jplph.2016.12.013 |
[1] | 徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367. |
[2] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[3] | 李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155. |
[4] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[5] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[6] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[7] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[8] | 唐子云,胡健欣,陈进,陆毅兴,孔伶俐,刁露,张发福,熊文广,曾振灵. 动物源金黄色葡萄球菌生物被膜形成能力与分子分型关系研究[J]. 中国农业科学, 2022, 55(3): 602-612. |
[9] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[10] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[11] | 王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析[J]. 中国农业科学, 2022, 55(22): 4473-4486. |
[12] | 董泽宽,张水勤,李燕婷,高强,赵秉强,袁亮. 添加螯合剂对磷酸二铵溶解、固定及转化的影响[J]. 中国农业科学, 2022, 55(21): 4225-4236. |
[13] | 尤佳玲,李有梅,孙孟豪,谢兆森. ‘黑比诺’葡萄不同叶龄叶片叶绿体内淀粉积累及其相关基因表达差异分析[J]. 中国农业科学, 2022, 55(21): 4265-4278. |
[14] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[15] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
|