中国农业科学 ›› 2019, Vol. 52 ›› Issue (9): 1564-1573.doi: 10.3864/j.issn.0578-1752.2019.09.008

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

我国典型农田土壤中有机物料腐解特征及驱动因子

马想,徐明岗,赵惠丽,段英华()   

  1. 中国农业科学院农业资源与农业区划研究所/耕地培育技术国家工程实验室,北京 100081
  • 收稿日期:2018-11-01 接受日期:2018-12-03 出版日期:2019-05-01 发布日期:2019-05-16
  • 通讯作者: 段英华
  • 作者简介:马想,E-mail: maxiang24@163.com
  • 基金资助:
    国家自然科学基金项目(41471247);北京市自然科学基金(6142018);土壤与农业可持续发展国家重点实验室开放基金(Y412201405)

Decomposition Characteristics and Driving Factors of Organic Materials in Typical Farmland Soils in China

MA Xiang,XU MingGang,ZHAO HuiLi,DUAN YingHua()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving of Arable Land, Beijing 100081
  • Received:2018-11-01 Accepted:2018-12-03 Online:2019-05-01 Published:2019-05-16
  • Contact: YingHua DUAN

摘要:

【目的】研究不同有机物料在我国典型农田土壤中的腐解残留率变化。结合气候、土壤等环境因素,阐明秸秆和粪肥在我国农田土壤中的腐解特征及其主控因素,为因地制宜的合理利用有机资源和培肥土壤提供科学依据。【方法】在“国家土壤肥力肥效监测基地”中的黑土、潮土和红壤实验站,开展大田填埋试验。有机物料烘干后过2 mm筛,置于48 μm孔径尼龙网袋后填埋在土壤中。共4种供试有机物料:小麦秸秆(WS)、玉米秸秆(MS)、猪粪(PM)和牛粪(CM)。根据各地温度差异,分别在填埋后49—360 d内采样6次。通过分析腐解过程中有机碳含量的变化,整合土壤积温与腐解残留率的相关关系,采用VPA(方差分解分析)定量化气候因子,有机物料性质及土壤养分对不同有机物料腐解的相对贡献率。【结果】秸秆的腐殖化系数为11%—39%,粪肥的为50%—57%,秸秆腐解速率显著高于粪肥,且南方红壤上腐解速率高于北方黑土。地积温方程可拟合有机物料腐解残留率变化,由该方程可知,秸秆和粪肥易分解碳库占比分别为76%和43%,稳定碳库分别为17%和53%。但秸秆和粪肥易分解碳库的分解速率常数(k)无显著差异,其周转积温(1/k)约为1 400—2 000℃。物料性质是有机物料腐解的最主要影响因子,贡献率为28%;其次是气候,贡献率为20%。秸秆腐解过程中主要影响因子为气候因子、有机物料性质和土壤因子三者的交互作用,贡献率达42.3%。粪肥腐解过程中主要影响因子为气候因子,贡献率为38.3%。【结论】秸秆腐解速率和其有机碳库中易分解碳库比例明显高于粪肥,秸秆腐解受到气候、土壤和物料性质协同作用影响,而粪肥则受气候因子影响最大。在田间秸秆还田时需结合当地水热条件确定还田时间和还田量,粪肥则建议在还田前进行堆腐,且注意施用时间。

关键词: 秸秆, 粪肥, 腐解残留率, 气候, 有机物料碳库

Abstract:

【Objective】Understanding of the dynamics and mechanisms of organic materials in soil are essential for improving the utilization of organic wastes and developing nutrient management strategies in many intensive farming regions around the world. The objective of this study was to elucidate the decomposition characteristics of straw and manure in typical farmland soils in China.【Method】The field experiment was conducted in three soils (Red soil, Aquic soil, and Black soil) at the “National Soil Fertility and Fertilizer Effects Long-term Monitoring Network” experimental station. Four organic materials (wheat straw (WS), maize straw (MS), pig manure (PM) and cattle manure (CM)) were dried and then packed separately into 48 μm-mesh size nylon net bag. Each bag contained 20 g organic materials was cut into 2 mm pieces. Based on the temperature difference, each treatment was sampled 6 times within 49-360 days after landfill. We analyzed the change of organic carbon content with soil accumulated temperature and residual rate during decomposition to study the relative contribution of climate factors, organic material properties and soil nutrients in the decomposition rate of different organic materials.【Result】Humification coefficient of straw and manure were 11%-39% and 50%-57%, respectively, suggesting faster decomposition of straw than manure. The organic labile decomposable carbon pool accounted for 76% and 43% at straw and manure, respectively, while recalcitrant carbon pool accounted for 17% and 53%, respectively. The decomposition rates constants (k) of labile decomposable carbon pool were similar in straw and manure, with an accumulated turnover temperature (1/k) of 1 400-2 000℃. VPA (variance decomposition analysis) analysis showed that the nature of the organic material, contributing 28% to the variance, was the main influencing factor in its decomposition. Individually, the greatest contributor during the decomposition of straw was the combined interaction of climate, organic material properties and soil (42.3%). In contrast, the decomposition of manure was mainly controlled by the climate (38.3%).【Conclusion】The decomposition rate and proportion of labile decomposable carbon pool in straw were higher than that of manure. The decomposition of straw was influenced by the synergistic effect of climate, soil and material properties, while manure was influenced mainly by climate factors. It was critical to determine the returning time and returning amount of straw in the field in combination with the local hydrothermal conditions. Manure was recommended to be piled up along with proper timing of its application before returning to the field.

Key words: straw, manure, fraction of carbon remaining, climate, carbon pool