中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2135-2149.doi: 10.3864/j.issn.0578-1752.2022.11.005
收稿日期:
2021-09-14
接受日期:
2021-12-02
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
吕昌河
作者简介:
张泽民,E-mail: 基金资助:
ZHANG ZeMin1(),LÜ ChangHe1,2(
)
Received:
2021-09-14
Accepted:
2021-12-02
Online:
2022-06-01
Published:
2022-06-16
Contact:
ChangHe LÜ
摘要:
【目的】 准确评估青藏高原春小麦光温生产潜力及其对气候变化的响应,可以为合理开发地区农业资源和保障区域粮食安全提供参考。【方法】 首先基于文献数据资料,在对WOFOST模型进行参数校验的基础上,利用青藏高原113个气象台站1958—2017年的逐日气候数据,逐年模拟了春小麦光温生产潜力并进行空间分析,然后利用Theil-Sen Median 坡度、Pearson相关和逐步多元线性回归(SMLR)等方法,统计分析了不同积温条件下春小麦光温生产潜力变化对气候要素变化的响应。【结果】 1958—2017年,青藏高原各个气象台站春小麦的多年平均光温生产潜力在3.20—8.68 t·hm-2之间,其中5—9月多年平均活动积温在1 600—3 400℃·d区间的潜力相对较高,并且呈轻微上升态势,主要分布在西藏“一江两河”、青海“河湟谷地”、四川甘孜州北部等,而<1 600℃·d和>3 400℃·d区间的生产潜力相对较低,且分别呈显著上升和下降态势(P<0.01)。青藏高原作物生长季的日平均温度、最高温度和最低温度均呈显著上升趋势(P<0.01),并且最低温度的上升速率高于平均温度和最高温度;温度日较差和太阳辐射则均呈下降趋势(P<0.01),下降速率分别为0.08℃·(10a)-1和8.96 MJ·m-2·(10a)-1。不同积温区间,气候要素的变化趋势存在明显差异,随着积温的增加,日最高温度、最低温度和平均温度的上升速率均呈下降态势,日较差的下降速率也呈减小态势,而太阳辐射的下降速率则为增加态势。青藏高原及各个积温区间春小麦光温生产潜力变化与太阳辐射变化均呈显著的正相关关系(P<0.01),而对温度变化的响应存在差异,积温区间从<1 600℃·d到>3 400℃·d,生产潜力对平均温度和最高温度的响应程度逐渐下降,且对最低温度的响应由正向变为负向,与日较差和太阳辐射的正相关性程度也呈先升高后下降的态势。在<1 600℃·d积温区间,平均温度变化是影响光温生产潜力变化的关键因素,平均温度每升高1℃,光温生产潜力可增加885.71 kg·hm-2(P<0.01);而在1 600—3 400℃·d区间,太阳辐射变化对春小麦光温生产潜力变化起决定作用,太阳辐射每升高1 MJ·m-2,生产潜力可增加3.42 kg·hm-2(P<0.01);而在>3 400℃·d区间,日最低温度和太阳辐射每升高1℃和1 MJ·m-2,春小麦光温生产潜力可分别下降和升高398.65和3.07 kg·hm-2(P<0.01)。【结论】 青藏高原不同积温区间的春小麦光温生产潜力及其对太阳辐射强度、温度变化的响应存在显著差异。研究结果有助于理解青藏高原不同积温条件下春小麦产量潜力水平及其对气候变化的响应,对区域春小麦布局和增产潜力开发提供支持。
张泽民,吕昌河. 青藏高原不同积温条件下春小麦光温生产潜力及其对气候变化的响应[J]. 中国农业科学, 2022, 55(11): 2135-2149.
ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau[J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
表1
用于校验WOFOST模型参数和模拟结果的验证数据集"
气象台站 Meteorological site | 海拔 Altitude (m) | 播种期 Sowing date (M-D) | 出苗期 Emergence date (M-D) | 生育期 Growing duration (d) | 种植密度 Sowing density | 灌溉期 Irrigation date | 施肥 Fertilization | 试验站产量 Experimental yield (kg·hm-2) | 年份 Year | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|
西宁 Xining | 3205 | 03-16— 04-03 | 04-10— 04-16 | 114— 125 | 每亩35万粒 3.5×105 seeds per mu | 全生育期灌溉4次 Irrigate 4 times during the whole growth period | 春播时每公顷施有机肥30 m3,磷酸二铵150 kg,尿素112.5 kg,苗期施尿素112.5 kg Apply 30 cubic meters of organic fertilizer, 150 kg diammonium phosphate, 112.5 kg urea per hectare when spring sowing, and 112.5 kg urea at seedling stage | 6944 - 8750 | 1998 | [ |
白朗 Bailang | 3836 | 04-15 | 04-26— 04-27 | 127— 139 | 每亩约31万粒 3.1×105 seeds per mu | 播前灌足底熵水,5月30日和6月14日各灌水一次 Irrigate sufficiently before sowing, and twice on 30th May and 14th June | 播前每亩底肥17.5 kg二铵,追肥2.5 kg二铵 Apply 17.5 kg diammonium per mu as base fertilizer before sowing, and topdressing 2.5 kg diammonium per mu | 5330 - 8416 | 2005 | [ |
互助 Huzhu | 2480 | 03-26— 04-10 | 04-14 | 149— 158 | 每亩约25万粒; 每亩15-20 kg 2.5×105 seeds per mu; 15-20 kg per mu | 4月26日灌溉一次+后期雨水 Irrigate on 26th April and depend on rainfall in the later stages | 全生育期每亩施尿素10 kg,磷酸二铵12.5 kg Apply 10 kg urea and 12.5 kg diammonium phosphate per mu during the whole growth period | 5670 - 8025 | 1999, 2003- 2007, 2012- 2014 | [ |
大通 Datong | 2450 | 03-20— 03-31 | 04-10 | 127— 139 | 每亩约25万粒 2.5×105 seeds per mu | — | — | 5565 - 7471 | 2003- 2007 | [ |
格尔木 Geermu | 2780 | 03-10— 04-05 | 04-17— 05-07 | 127 | — | — | — | — | 2000- 2005 | [ |
昌都 Changdu | 3400 | 04-13— 04-15 | 04.25— 05-01 | 128 | — | — | — | — | 1978 | [ |
诺木洪 Nuomuhong | 2790 | 03-08— 03-28 | 04-18— 04-23 | 151 | — | — | — | — | 1978 | [ |
拉萨 Lhasa | 3658 | 03-20— 04-10 | 04-17— 04-27 | 128— 138 | 每亩约22万粒 2.2×105 seeds per mu | 全生育期灌溉3次 Irrigate 3 times during the whole growth period | 播前每亩施磷酸二铵12.5 kg,有机肥12.5 kg,尿素5 kg做底肥,追肥5 kg尿素1次 Apply 12.5 kg diammonium phosphate, 12.5 kg organic fertilizer and 5 kg urea as base fertilizer before sowing, and topdressing 5 kg urea per acre. | 5878 - 7465 | 1978, 2017- 2018 | [ |
平安 Pingan | 2125 | 03-10— 04-10 | — | — | 每亩17 - 24 kg 17 - 24 kg per mu | 二叶至三叶期间浇头水,分蘖、抽穗、灌浆和麦黄期分别浇一次水 Irrigate once during the two- to three- leaf period, and irrigate 4 times at tillering, heading, grain-filling and wheat yellowing stages | 全生育期每亩施用3000-4000 kg农家肥,3.0-4.0 kg P2O5 Apply 3000-4000 kg farmyard manure and 3.0-4.0 kg P2O5 per mu during the whole growth period | 6798 - 7946 | 2004- 2006 | [ |
表2
青藏高原不同积温区间的气象台站分布"
积温区间 Accumulated temperature range | 气象台站 Meteorological station |
---|---|
<1 600℃·d | 色达、刚察、杂多、若尔盖、乌鞘岭、红原、玛曲、聂拉木、索县、理塘、门源、海晏、同德、班玛、兴海、定日、碌曲、类乌齐、狮泉河、祁连 Seda, Gangcha, Zaduo, Ruoergai, Wushaoling, Hongyuan, Maqu, Nielamu, Suoxian, Litang, Menyuan, Haiyan, Tongde, Banma, Xinghai, Dingri, Luqu, Leiwuqi, Shiquanhe, Qilian |
1 600-3 400℃·d | 合作、丁青、芒康、玉树、比如、阿坝、夏河、稻城、贵南、化隆、临潭、德钦、江孜、囊谦、壤塘、左贡、茶卡、普兰、湟源、隆子、互助、都兰、香格里拉、湟中、南木林、大通、大柴旦、茫崖、甘孜、松潘、洛隆、墨竹工卡、德格、卓尼、共和、炉霍、拉孜、日喀则、乌兰、塔什库尔干、康定、肃南、尼木、新龙、岷县、德令哈、冷湖、同仁、和政、九龙、小灶火、白玉、林芝、米林、昌都、道孚、拉萨、迭部、马尔康、西宁、泽当、诺木洪、波密、格尔木、贡嘎、康乐、黑水、加查、平安、贵德、乐都、肃北、乡城、尖扎、乌恰、民和、循化 Hezuo, Dingqing, Mangkang, Yushu, Biru, Aba, Xiahe, Daocheng, Guinan, Hualong, Lintan, Deqin, Jiangzi, Nangqian, Rangtang, Zuogong, Chaka, Pulan, Huangyuan, Longzi, Huzhu, Dulan, Shangri-La, Huangzhong, Nanmulin, Datong, Dachaidan, Mangya, Ganzi, Songpan, Luolong, Mozhugongka, Dege, Zhuoni, Gonghe, Luhuo, Lazi, Rikaze, Wulan, Tashikuergan, Kangding, Sunan, Nimu, Xinlong, Minxian, Delingha, Lenghu, Tongren, Hezheng, Jiulong, Xiaozhaohuo, Baiyu, Linzhi, Milin, Changdu, Daofu, Lhasa, Diebu, Maerkang, Xining, Zedang, Nuomuhong, Bomi, Golmud, Gongga, Kangle, Heishui, Jiacha, Pingan, Guide, Ledu, Subei, Xiangcheng, Jianzha, Wuqia, Minhe, Xunhua |
>3 400℃·d | 兰坪、雅江、盐源、宕昌、维西、木里、丽江、八宿、察隅、剑川、小金、宁蒗、金川、巴塘、洱源、舟曲 Lanping, Yajiang, Yanyuan, Dangchang, Weixi, Muli, Lijiang, Basu, Chayu, Jianchuan, Xiaojin, Ninglang, Jinchuan, Batang, Eryuan, Zhouqu |
表3
WOFOST模型模拟青藏高原春小麦的主要作物参数"
参数 Parameter | 含义Meaning | 单位 Unit | 参数值 Value | |
---|---|---|---|---|
TBASEM | 出苗时的最低下限温度 Lower threshold temperature for emergence | ℃ | 0 | |
AMAXTB | 最大CO2同化速率 Maximum leaf CO2 assimilation | kg CO2 ·hm-2·h-1 | 35.83 | |
SPAN | 叶片在 35℃时的生命期 Life span of leaves growing at 35℃ | d | 31.3 | |
RGRLAI | 叶面积指数最大相对增长率 Maximum relative increase in LAI | hm2·hm-2·d-1 | 0.00817 | |
PERDL | 水分胁迫下的叶片最大死亡速率 Maximum relative death rate of leaves due to water stress | kg·(kg·d)-1 | 0.030 | |
RML | 维持呼吸对同化物的消耗速率 Relative maintenance respiration rate | 叶 Leaves | kg CH2O·(kg·d)-1 | 0.030 |
RMO | 籽粒 Storage organs | 0.010 | ||
RMR | 根Roots | 0.015 | ||
RMS | 茎 Stems | 0.015 | ||
Q10 | 温度每变化10℃呼吸速率的相对变化 Relative change in respiration rate per 10℃ change | — | 2.0 |
表4
青藏高原及不同积温区间作物生长季平均温度和太阳辐射的多年均值及变化率"
气候因子 Climatic factor | 积温区间 Accumulated temperature range | ||||
---|---|---|---|---|---|
<1600℃·d | 1600-3400℃·d | >3400℃·d | 青藏高原The QTP | ||
平均温度Average temperature | 平均值 Average (℃) | 9.255 | 13.199 | 17.564 | 13.111 |
最高温度 Maximum temperature | 16.131 | 20.323 | 23.995 | 20.081 | |
最低温度Minimum temperature | 3.698 | 7.550 | 12.929 | 7.609 | |
日较差 Diurnal range | 12.425 | 12.778 | 11.057 | 12.470 | |
太阳辐射 Solar radiation | 平均值Average (MJ·m-2) | 3217.581 | 3139.613 | 2855.819 | 3159.795 |
平均温度Average temperature | 变化率SLOPE (℃·(10a)-1) | 0.299*** | 0.228*** | 0.174*** | 0.236* |
最高温度 Maximum temperature | 0.270*** | 0.251*** | 0.189*** | 0.247*** | |
最低温度Minimum temperature | 0.402*** | 0.319*** | 0.256*** | 0.327*** | |
日较差 Diurnal range | -0.121*** | -0.075** | -0.042 | -0.075*** | |
太阳辐射 Solar radiation | 变化率SLOPE (MJ·m-2·(10a)-1) | -6.624 | -4.876 | -9.262 | -5.266 |
表5
青藏高原及各积温区间春小麦光温生产潜力与各气候因子的Pearson相关系数"
积温区间Accumulated temperature range | ΔTave | ΔTmax | ΔTmin | ΔTd | ΔRa |
---|---|---|---|---|---|
<1600℃·d | 0.784*** | 0.770*** | 0.609*** | 0.162* | 0. 120* |
1600 - 3400℃·d | 0.234** | 0.351** | -0.200** | 0.387** | 0.470*** |
>3400℃·d | 0.008 | 0.154* | -0.332** | 0.371** | 0.467*** |
青藏高原 The QTP | 0.359** | 0.383** | -0.111* | 0.421*** | 0.510*** |
表6
青藏高原及不同积温区间春小麦光温生产潜力与气候因子的逐步回归方程"
积温区间 Accumulated temperature range | 逐步多元回归方程 Stepwise multiple linear regression | F | Sig. | R2 | RMSE |
---|---|---|---|---|---|
<1600℃·d | ΔYp = 885.71×ΔTave + 1.03 | 92.744 | 0.000 | 0.784 | 344.273 |
1600 - 3400℃·d | ΔYp = 3.42×ΔRa - 2.615 | 16.490 | 0.000 | 0.470 | 333.672 |
>3400℃·d | ΔYp = -398.65×ΔTmax + 3.07×ΔRa - 5.46 | 18.157 | 0.000 | 0.624 | 298.625 |
青藏高原The QTP | ΔYp = 2.64×ΔRa + 3.38 | 24.401 | 0.000 | 0.601 | 255.021 |
[1] | IPCC. Climate Change 2013:The Physical Science Basis. Cambridge & New York: Cambridge University Press, 2013. |
[2] |
PIAO S L, CIAIS P, HUANG Y, SHEN Z H, PENG S S, LI J S, ZHOU L P, LIU H Y, MA Y C, DING Y H, FRIEDLINGSTEIN P, LIU C Z, TAN K, YU Y Q, ZHANG T Y, FANG J Y. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467(7311): 43-51.
doi: 10.1038/nature09364 |
[3] |
ZHANG Y L, HU Z J, QI W, WU X, BAI W Q, LI L H, DING M J, LIU L S, WANG Z F, ZHENG D. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. Journal of Geographical Sciences, 2016, 26(1): 27-44.
doi: 10.1007/s11442-016-1252-9 |
[4] |
LI C Y, TANG Y, LUO H, DI B F, ZHANG L Y. Local farmers’ perceptions of climate change and local adaptive strategies: A case study from the Middle Yarlung Zangbo River Valley, Tibet, China. Environmental Management, 2013, 52(4): 894-906.
doi: 10.1007/s00267-013-0139-0 |
[5] |
YOU Q L, FRAEDRICH K, REN G Y, PEPIN N, KANG S C. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 2013, 33(6): 1337-1347.
doi: 10.1002/joc.3512 |
[6] |
段健, 徐勇, 孙晓一. 青藏高原粮食生产、消费及安全风险格局变化. 自然资源学报, 2019, 34(4): 673-688.
doi: 10.31497/zrzyxb.20190401 |
DUAN J, XU Y, SUN X Y. Spatial patterns and their changes of grain production, grain consumption and grain security in the Tibetan Plateau. Journal of Natural Resources, 2019, 34(4): 673-688. (in Chinese)
doi: 10.31497/zrzyxb.20190401 |
|
[7] |
SHI W J, LU C H, SHI X L, CUI J Y. Patterns and trends in grain self-sufficiency on the Tibetan Plateau during 1985-2016. Journal of Geographical Sciences, 2020, 30(10): 1590-1602.
doi: 10.1007/s11442-020-1801-0 |
[8] | 强小林, 迟德钊, 冯继林. 青藏高原区域青稞生产与发展现状. 西藏科技, 2008(3): 11-17. |
QIANG X L, CHI D Z, FENG J L. Development status and production of highland barley in the Qinghai-Tibet Plateau. Tibet Science and Technology, 2008(3): 11-17. (in Chinese) | |
[9] | 赵雪雁, 王伟军, 万文玉, 李花. 近50年气候变化对青藏高原青稞气候生产潜力的影响. 中国生态农业学报, 2015, 23(10): 1329-1338. |
ZHAO X Y, WANG W J, WAN W Y, LI H. Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1329-1338. (in Chinese) | |
[10] | 弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应. 中国农业科学, 2020, 53(4): 720-733. |
GONG K Y, HE L, WU D R, LÜ C H, LI J, ZHOU W B, DU J, YU Q. Spatial-temporal variations of photo-temperature potential productivity and yield gap of highland barley and its response to climate change in the cold regions of the Tibetan Plateau. Scientia Agricultura Sinica, 2020, 53(4): 720-733. (in Chinese) | |
[11] |
SMITH W N, GRANT B B, CAMPBELL C A, McConkey B G, DESJARDINS R L, KROEBEL R, MALHI S S. Crop residue removal effects on soil carbon: Measured and inter-model comparisons. Agriculture Ecosystems & Environment, 2012, 161: 27-38.
doi: 10.1016/j.agee.2012.07.024 |
[12] |
HU S, MO X G. Interpreting spatial heterogeneity of crop yield with a process model and remote sensing. Ecological Modelling, 2011, 222(14): 2530-2541.
doi: 10.1016/j.ecolmodel.2010.11.011 |
[13] | ZHANG J, HU K L, LI K J, ZHENG C L, LI B G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil & Tillage Research, 2017, 165: 302-314. |
[14] |
HAN J, JIA Z, WU W, LI C S, HAN Q F, ZHANG J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research, 2014, 155: 202-212.
doi: 10.1016/j.fcr.2013.09.004 |
[15] | CHURKINA G, RUNNING S W, SCHLOSS A L. Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biology, 1999, 51: 46-55. |
[16] | SALO T J, PALOSUO T, KERSEBAUM K C, NENDEL C, ANGULO C, EWERT F, BINDI M, CALANCA P, KLEIN T, MORIONDO M, FERRISE R, OLESEN J E, PATIL R H, RUGET F, TAKAC J, HLAVINKA P, TRNKA M, ROTTTER R P. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154(7): 1218-1240. |
[17] |
WU D R, YU Q, LU C H, HENGSDIJK H. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy, 2006, 24(3): 226-235.
doi: 10.1016/j.eja.2005.06.001 |
[18] | BOOGAARD H, WOLF J, SUPIT I, NIEMEYER S, VAN ITTERSUM M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 2013, 143(SI): 130-142. |
[19] |
WANG T, LU C H, YU B H. Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region. Journal of Geographical Sciences, 2011, 21(4): 677-688.
doi: 10.1007/s11442-011-0872-3 |
[20] |
TANG Y, WAN S, HE J, ZHAO X. Foreword to the special issue: Looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology, 2009, 2(4): 169-171.
doi: 10.1093/jpe/rtp026 |
[21] | 张镱锂, 刘林山, 王兆锋, 摆万奇, 丁明军, 王秀红, 阎建忠, 许尔琪, 吴雪, 张炳华, 刘琼欢, 赵志龙, 刘峰贵, 郑度. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875. |
ZHANG Y L, LIU L S, WANG Z F, BAI W Q, DING M J, WANG X H, YAN J Z, XU E Q, WU X, ZHANG B H, LIU Q H, ZHAO Z L, LIU F G, ZHENG D. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. (in Chinese) | |
[22] | DOORENBOS J, PRUITT W O. Guidelines for Predicting Crop Water Requirements. Rome, Italy: Food and Agriculture Organization of the United Nations, 1977. |
[23] | 李军, 邵明安, 张兴昌. 黄土高原地区EPIC模型数据库组建. 西北农林科技大学学报, 2004, 32(8): 21-26. |
LI J, SHAO M A, ZHANG X C. Database construction for the EPIC model on the Loess Plateau region. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(8): 21-26. (in Chinese) | |
[24] | 刘敏, 孙杰, 杨宏青, 袁业畅. 湖北省不同地形条件下风随高度变化研究. 气象, 2010, 36(4): 63-67. |
LIU M, SUN J, YANG H Q, YUAN Y C. The study on wind speed change with height under different terrain conditions in Hubei province. Meteorological Monthly, 2010, 36(4): 63-67. (in Chinese) | |
[25] |
DAI Y J, SHANGGUAN W, DUAN Q Y, LIU B Y, FU S H, NIU G Y. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. Journal of Hydrometeorology, 2013, 14(3): 869-887.
doi: 10.1175/JHM-D-12-0149.1 |
[26] | 联合国粮农组织(FAO). 青藏高原土壤质地数据集(2010). 国家青藏高原科学数据中心, 2019. |
Food and Agriculture Organization of the United Nations (FAO). Dataset of soil texture on the Qinghai-Tibet Plateau (2010). National Tibetan Plateau Data Center, 2019. (in Chinese) | |
[27] | FISCHER G, NACHTERGAELE F, PRIELER S. Global agro- ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008. |
[28] | 钟强. 青藏高原太阳总辐射的计算方法的讨论. 高原气象, 1986, 5(3): 197-210. |
ZHONG Q. Discussions in the climatological methods of calculating the global solar radiation over the Qinghai-Xizang Plateau Area. Plateau Meteorology, 1986, 5(3): 197-210. (in Chinese) | |
[29] | 李为虎, 杨永红, 达瓦. 西藏拉萨Angstrom-Prescott系数选取研究. 安徽农业科学, 2009, 37(12): 5335-5339. |
LI W H, WANG Y H, DA W. Study on selection of Angstrom- Prescott indexes of Lhasa in Tibet. Journal of Anhui Agriculture Science, 2009, 37(12) :5335-5339. (in Chinese) | |
[30] | BOOGAARD H L, DIEPEN C A V, ROTTER R P, CABRERA J M C A, LAAR H H V. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5. Wageningen: SC-DLO (Technical document/DLO Winand Staring Centre 52), 1998: 127. |
[31] |
POHLERT T. Use of empirical global radiation models for maize growth simulation. Agricultural and Forest Meteorology, 2004, 126(1-2): 47-58.
doi: 10.1016/j.agrformet.2004.05.003 |
[32] |
KALRA N, CHAKRABORTY D, KUMAR P R, JOLLY M, SHARMA P K. An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers’ fields data. Agricultural Water Management, 2007, 93(1-2): 54-64.
doi: 10.1016/j.agwat.2007.06.004 |
[33] | 金善宝. 中国小麦生态. 北京: 科学出版社, 1991: 173-223. |
JIN S B. Research of Wheat Ecology in China. Beijing: Science Press, 1991: 173-223. (in Chinese) | |
[34] | 王兰, 魏迎春, 王菊花, 范春捆, 梁艳华, 王建银. 西藏春小麦育种材料主要农艺性状与产量的相关、通径分析. 西藏农业科技, 2016, 38(3): 18-21. |
WANG L, WEI Y C, WANG J H, FAN C K, LIANG Y H, WANG J Y. The correlation and path analysis on the yield and main agronomic traits of spring wheat breeding material in Tibet. Tibet Journal of Agricultural Sciences, 2016, 38(3):18-21. (in Chinese) | |
[35] | 郑度. 中国生态地理区域系统研究. 北京: 商务印书馆, 2008: 6-31. |
ZHENG D. Study of China’s Eco-Geographical Region System. Beijing: The Commercial Press, 2008. (in Chinese) | |
[36] |
陈洁, 刘玉洁, 潘韬, 吴绍洪, 谭清华, 葛全胜, 刘燕华. 1961-2010年中国降水时空变化特征及对地表干湿状况影响. 自然资源学报, 2019, 34(11): 2440-2453.
doi: 10.31497/zrzyxb.20191115 |
CHEN J, LIU Y J, PAN T, WU S H, TAN Q H, GE Q S, LIU Y H. Spatiotemporal variation of precipitation in China and its impact on surface dry-wet conditions during 1961-2010. Journal of Natural Resources, 2019, 34(11): 2440-2453. (in Chinese)
doi: 10.31497/zrzyxb.20191115 |
|
[37] | 胡冬梅. 北方春小麦品种在西宁生态地区产量比较. 青海科技, 1999, 6(3): 9-10. |
HU D M. Comparison of output among different varieties of spring wheat from north China planted in Xining area. Qinghai Science and Technology, 1999, 6(3): 9-10. (in Chinese) | |
[38] | 尹中江, 刘启勇, 魏迎春, 冬梅, 桑布. 白朗县白雪试验站春小麦品比试验——西藏种植业成果转化子项目. 西藏农业科技, 2008, 30(2): 11-15. |
YIN Z J, LIU Q Y, WEI Y C, DONG M, SANG B. Spring wheat variety comparison test at Baixue experimental station in Bailang county-subproject of transformation of Tibetan planting industry achievements. Tibet Agricultural Science and Technology, 2008, 30(2): 11-15. (in Chinese) | |
[39] | 王发忠. 杂交春小麦区域试验初报. 青海农技推广, 2000(4): 46-47. |
WANG F Z. Preliminary report on regional experiment of hybrid spring wheat. Qinghai Agro-Technology Extension, 2000(4): 46-47. (in Chinese) | |
[40] | 陈志国, 杨倩, 袁飞敏, 宋继昌, 张林春. 抗旱高产旱地春小麦新品种——青麦5号. 麦类作物学报, 2017, 37(8): 1139. |
CHEN Z G, YANG Q, YUAN F M. SONG J C, ZHANG L C. A new spring wheat variety Qingmai-5 with drought resistance and high yield in dryland. Journal of Triticeae Crops, 2017, 37(8): 1139. (in Chinese) | |
[41] | 常磊. 西北旱地春小麦农艺指标变异及稳定性分析. 兰州: 甘肃农业大学, 2008. |
CHANG L. The agronomic traits difference and the analysis on stability of spring wheat in rainfed region of Northwest China. Lanzhou: Gansu Agricultural University, 2008. (in Chinese) | |
[42] | 王力. 青藏高原东北部农作物与牧草物候特征及其对气候变化的响应. 兰州: 兰州大学, 2018. |
WANG L, The responses of phenological characteristic of crop and herbage to climate change in the Northeastern Tibetan Plateau. Lanzhou: Lanzhou University, 2018. (in Chinese) | |
[43] | 曹永华. 青藏高原小麦高产生态气候特征的分析. 农业气象, 1982(2): 23-27. |
CAO Y H. Analysis on ecoclimatic characteristics of high yield wheat in the Qinghai-Tibet Plateau. Agricultural Meteorology, 1982(2): 23-27. (in Chinese) | |
[44] | 张永鹏, 梁艳华, 王菊花, 魏迎春, 范瑞英. 2017-2018年度春小麦全区区域(拉萨点)试验初报. 西藏农业科技, 2019, 41(S1): 81-83. |
ZHANG Y P, LIANG Y H, WANG J H, WEI Y C, FAN R Y. Regional experimental study of spring wheat in the 2017-2018. Tibet Agricultural Science and Technology, 2019, 41(S1): 81-83. (in Chinese) | |
[45] | 路季梅, 俞炳杲. 西藏高原麦类作物产量形成的特点. 中国农业科学, 1978(4): 25-34. |
LU J M, YU B G. The characteristics of production formation of wheat crops in the Tibet Plateau. Scientia Agricultura Sinica, 1978(4): 25-34. (in Chinese) | |
[46] | 张怀刚, 陈志国, 刘宝龙, 李毅, 张梅妞, 相文德, 张煜, 李全新, 张波, 赵会君. 高产抗病春小麦新品种—高原142. 麦类作物学报, 2008, 28(2): 355. |
ZHANG H G, CHEN Z G, LIU B L, LI Y, ZHANG M N, XIANG W D, ZHANG Y, LI Q X, ZHANG B, ZHAO H J. A new spring wheat variety with high yield and disease resistance-Plateau 142. Journal of Triticeae Crops, 2008, 28(2): 355. (in Chinese) | |
[47] |
SEN P K. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[48] |
ZHANG Z M, LU C H. Identification of maize yield trend patterns in the North China Plain. International Journal of Plant Production, 2021, 15(1): 125-137.
doi: 10.1007/s42106-020-00121-5 |
[49] | LOBELL D B, ASNER G P. Climate and management contributions to recent trends in US agricultural yields. Science, 2003, 299(5609): 1032. |
[50] |
CHEN Y, ZHANG Z, TAO F, WANG P, WEI X. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crops Research, 2017, 206: 11-20.
doi: 10.1016/j.fcr.2017.02.012 |
[51] |
LIU Z J, YANG X G, LIN X M, HUBBARD K G, LV S, WANG J. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Science of the Total Environment, 2016, 541: 756-764.
doi: 10.1016/j.scitotenv.2015.08.145 |
[52] |
TAO F L, YOKOZAWA M, XU Y L, HAYASHI Y, ZHANG Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138: 82-92.
doi: 10.1016/j.agrformet.2006.03.014 |
[53] | 吴绍洪, 尹云鹤, 郑度, 杨勤业. 青藏高原近30年气候变化趋势. 地理学报, 2005, 60(1): 3-11. |
WU S H, YIN Y H, ZHENG D, YANG Q Y. Climate changes in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1):3-11. (in Chinese) | |
[54] | 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题. 科学通报, 2000, 45(1): 98-106. |
YAO C D, LIU X D, WANG N L. The amplitude of climate change in Qinghai-Tibet Plateau. Chinese Science Bulletin, 2000, 45(1): 98-106. (in Chinese) | |
[55] | 范兰, 吕昌河, 陈朝. 作物产量差及其形成原因综述. 自然资源学报, 2011, 26(12): 2155-2166. |
FAN L, LÜ C H, CHEN Z. A review on crop yield gaps and the causes. Journal of Natural Resources, 2011, 26(12): 2155-2166. (in Chinese) | |
[56] | 杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014, 47(14): 2731-2741. |
YANG X G, LIU Z J. Advances in research on crop yield gaps. Chinese Agricultural Sciences, 2014, 47(14): 2731-2741. (in Chinese) | |
[57] | 姜丽霞, 吕佳佳, 王晾晾, 杨晓强, 李帅. 黑龙江省气温日较差的变化趋势及其与作物产量的关系. 中国农业气象 2013, 34(2): 179-185. |
JIANG L X, LÜ J J, WANG L L, YANG X Q, LI S. Variation of diurnal temperature range and its relationship with crop yield in Heilongjiang province. Chinese Journal of Agrometeorology, 2013, 34(2): 179-185. (in Chinese) | |
[58] | BRAGANZA K, KAROLY D J, ARBLASTER J M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 2004, 31(13): 1-4. |
[59] |
秦大河. 气候变化科学与人类可持续发展. 地理科学进展, 2014, 33(7): 874-883.
doi: 10.11820/dlkxjz.2014.07.002 |
QIN D H. Climate change science and sustainable development. Progress in Geography, 2014, 33(7):874-883.. (in Chinese)
doi: 10.11820/dlkxjz.2014.07.002 |
[1] | 麻碧娇,苟志文,殷文,于爱忠,樊志龙,胡发龙,赵财,柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响[J]. 中国农业科学, 2022, 55(18): 3501-3515. |
[2] | 侯慧芝,张绪成,尹嘉德,方彦杰,王红丽,于显枫,马一凡,张国平,雷康宁. 旱地化肥分层和深施对春小麦水肥利用及产量的影响[J]. 中国农业科学, 2022, 55(17): 3289-3302. |
[3] | 邓艾兴,刘猷红,孟英,陈长青,董文军,李歌星,张俊,张卫建. 田间增温1.5℃对高纬度粳稻产量和品质的影响[J]. 中国农业科学, 2022, 55(1): 51-60. |
[4] | 坚天才,吴宏亮,康建宏,李鑫,刘根红,陈倬,高娣. 氮素缓解春小麦花后高温早衰的荧光特性研究[J]. 中国农业科学, 2021, 54(15): 3355-3368. |
[5] | 王钧,李广,闫丽娟,刘强,聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 2020, 53(5): 904-916. |
[6] | 弓开元,何亮,邬定荣,吕昌河,李俊,周文彬,杜军,于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应[J]. 中国农业科学, 2020, 53(4): 720-733. |
[7] | 贾立国,石晓华,苏亚拉其其格,秦永林,于静,陈杨,樊明寿. 我国春麦区小麦化肥有机替代潜力分析[J]. 中国农业科学, 2020, 53(23): 4855-4865. |
[8] | 王西娜,于金铭,谭军利,张佳群,魏照清,王朝辉. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力[J]. 中国农业科学, 2020, 53(23): 4891-4903. |
[9] | 相吉山,刘鹏鹏,桑伟,崔凤娟,韩新年,聂迎彬,孔德真,邹波,徐红军,穆培源. 新疆春小麦品种Pins基因等位变异及其对新疆拉面加工品质的影响[J]. 中国农业科学, 2020, 53(19): 3857-3866. |
[10] | 焦亚鹏,齐鹏,王晓娇,武均,姚一铭,蔡立群,张仁陟. 施氮量对农田土壤有机氮组分及酶活性的影响[J]. 中国农业科学, 2020, 53(12): 2423-2434. |
[11] | 殷文,柴强,胡发龙,樊志龙,范虹,于爱忠,赵财. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征[J]. 中国农业科学, 2019, 52(7): 1247-1259. |
[12] | 李健, 丰先红, 蔡一林. 青藏高原青稞育成品种的亲缘系数分析[J]. 中国农业科学, 2019, 52(16): 2758-2767. |
[13] | 樊志龙,赵财,刘畅,于爱忠,殷文,胡发龙,柴强. 一膜两年用少耕轮作对水氮减投小麦产量形成的促进效应[J]. 中国农业科学, 2018, 51(19): 3651-3662. |
[14] | 徐梦,李晓亮,蔡晓布,李晓林,张旭博,张俊伶. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征[J]. 中国农业科学, 2018, 51(19): 3714-3725. |
[15] | 王建林,钟志明,冯西博,付刚,侯维海,王改花,大次卓嘎. 青藏高原青稞蛋白质含量空间分异规律及其与环境因子的关系[J]. 中国农业科学, 2017, 50(6): 969-977. |
|