中国农业科学 ›› 2019, Vol. 52 ›› Issue (7): 1215-1226.doi: 10.3864/j.issn.0578-1752.2019.07.009
收稿日期:
2018-11-01
接受日期:
2019-02-18
出版日期:
2019-04-01
发布日期:
2019-04-04
通讯作者:
乐美旺
作者简介:
孙建,E-mail: 基金资助:
SUN Jian,YAN XiaoWen,LE MeiWang(),RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing
Received:
2018-11-01
Accepted:
2019-02-18
Online:
2019-04-01
Published:
2019-04-04
Contact:
MeiWang LE
摘要:
【目的】研究干旱胁迫对不同抗旱性芝麻品种叶片和根系生理生化特性的影响,分析不同基因型芝麻对花期干旱胁迫的生理响应差异,为芝麻抗旱性研究和改良提供理论参考。【方法】采用盆栽法,以抗旱品种金黄麻和干旱敏感品种竹山白为试验材料,在花期进行轻度(T1)、中度(T2)和重度(T3)干旱胁迫处理,以正常浇水为对照(CK),分别测定植株叶片和根系的丙二醛(MDA)、过氧化氢(H2O2)、脯氨酸(Pro)、可溶性糖(SS)、可溶性蛋白(SP)、游离氨基酸(AA)、还原型谷胱甘肽(GSH)、还原型抗坏血酸(AsA)等含量,超氧化歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和苯丙氨酸解氨酶(PAL)活性,分析干旱胁迫下2个基因型间生理响应机理的差异。【结果】干旱胁迫后,芝麻叶片中MDA、H2O2、Pro、SS、SP、GSH含量和SOD、POD、PAL酶活性以及根系中MDA、SS、SP、AA、GSH、AsA含量和CAT、PAL活性随着胁迫程度的不断加剧呈不断上升趋势,叶片中的AA、AsA含量和CAT活性以及根系中H2O2、Pro含量和SOD、POD活性随着胁迫程度的加剧呈先升后降趋势。相关分析结果显示,叶片中各项指标测定值与根系中指标值均呈正相关,品种抗旱性与膜脂过氧化伤害物质(MDA和H2O2)含量呈负相关,与部分渗透调节物质、防御系统物质含量和保护酶活性呈正相关。【结论】在花期干旱胁迫下,对2个不同基因型芝麻测定的12个生理生化指标均出现不同程度上升,响应差异较大,叶片大于根系。抗旱品种较干旱敏感品种表现为细胞膜脂过氧化伤害较轻,渗透调节物质积累量较多,保护酶(SOD和CAT)活性较强,抗氧化物质(GSH和AsA)含量较高。芝麻抗旱性生理机理表现为多方面的综合防御。
孙建,颜小文,乐美旺,饶月亮,颜廷献,叶艳英,周红英. 芝麻不同抗旱基因型对花期干旱胁迫的生理响应机理[J]. 中国农业科学, 2019, 52(7): 1215-1226.
SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period[J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
表1
花期干旱胁迫下芝麻生理生化指标的相关分析"
丙二醛 MDA | 过氧化氢 H2O2 | 脯氨酸 Pro | 可溶性糖 SS | 可溶性 蛋白 SP | 游离 氨基酸 AA | 超氧化 歧化酶 SOD | 过氧化 物酶 POD | 过氧化 氢酶 CAT | 还原型谷胱甘肽 GSH | 抗坏血酸 AsA | 苯丙氨酸解氨酶 PAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDA | 1.000 | |||||||||||
H2O2 | 0.654** | 1.000 | ||||||||||
Pro | 0.518** | 0.716** | 1.000 | |||||||||
SS | 0.702** | 0.640** | 0.774** | 1.000 | ||||||||
SP | 0.715** | 0.649** | 0.742** | 0.936** | 1.000 | |||||||
AA | 0.712** | 0.717** | 0.654** | 0.865** | 0.889** | 1.000 | ||||||
SOD | 0.520** | 0.622** | 0.843** | 0.911** | 0.908** | 0.867** | 1.000 | |||||
POD | 0.374** | 0.089 | 0.180 | 0.217 | 0.080 | -0.011 | 0.026 | 1.000 | ||||
CAT | 0.573** | 0.373** | 0.558** | 0.754** | 0.743** | 0.672** | 0.649** | 0.290** | 1.000 | |||
GSH | 0.671** | 0.296* | 0.500** | 0.608** | 0.511** | 0.283 | 0.360* | 0.639** | 0.562** | 1.000 | ||
AsA | 0.622** | 0.704** | 0.723** | 0.869** | 0.894** | 0.923** | 0.903** | -0.048 | 0.626** | 0.305* | 1.000 | |
PAL | 0.790** | 0.847** | 0.745** | 0.770** | 0.756** | 0.714** | 0.637** | 0.248 | 0.669** | 0.639** | 0.706** | 1.000 |
表2
花期干旱胁迫下芝麻叶片与根系生理生化指标的相关分析"
项目 Item | 叶片生理生化指标 Physiological and biochemical indexes of leaves | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDA | H2O2 | Pro | SS | SP | AA | SOD | POD | CAT | GSH | AsA | PAL | ||
根系生理生化指标 Physiological and biochemical indexes of roots | MDA | 0.782** | 0.761** | 0.836** | 0.636** | 0.482* | 0.367 | 0.519** | 0.893** | 0.600** | 0.849** | 0.418* | 0.877** |
H2O2 | 0.775** | 0.876** | 0.331 | 0.333 | 0.229 | 0.211 | 0.103 | 0.725** | 0.164 | 0.528** | -0.003 | 0.739** | |
Pro | 0.211 | -0.075 | 0.274 | 0.574** | 0.752** | 0.327 | 0.528** | -0.054 | 0.484* | 0.353 | 0.343 | 0.182 | |
SS | 0.604** | 0.333 | 0.678** | 0.938** | 0.934** | 0.759** | 0.914** | 0.543** | 0.748** | 0.688** | 0.710** | 0.478* | |
SP | 0.627** | 0.445* | 0.879** | 0.833** | 0.759** | 0.592** | 0.850** | 0.692** | 0.699** | 0.753** | 0.716** | 0.598** | |
AA | 0.679** | 0.457* | 0.884** | 0.920** | 0.834** | 0.560** | 0.865** | 0.732** | 0.750** | 0.872** | 0.641** | 0.671** | |
SOD | 0.232 | -0.079 | 0.339 | 0.789** | 0.823** | 0.772** | 0.832** | 0.217 | 0.601** | 0.314 | 0.640** | 0.023 | |
POD | 0.786** | 0.697** | 0.424* | 0.613** | 0.482* | 0.672** | 0.515* | 0.645** | 0.120 | 0.494* | 0.771** | 0.568** | |
CAT | 0.320 | 0.059 | 0.745** | 0.807** | 0.741** | 0.568** | 0.902** | 0.393 | 0.570** | 0.593** | 0.837** | 0.254 | |
GSH | 0.766** | 0.587** | 0.868** | 0.809** | 0.721** | 0.553** | 0.744** | 0.735** | 0.729** | 0.836** | 0.617** | 0.764** | |
AsA | 0.413* | 0.152 | 0.780** | 0.779** | 0.741** | 0.602** | 0.915** | 0.480* | 0.648** | 0.561** | 0.710** | 0.247 | |
PAL | 0.529** | 0.359 | 0.895** | 0.783** | 0.718** | 0.290 | 0.761** | 0.567** | 0.587** | 0.854** | 0.607** | 0.600** |
表3
花期干旱胁迫下芝麻生理生化指标与品种抗旱性的相关分析"
叶片生理生化指标 Physiological and biochemical indexes of leaves | 相关系数1 Coefficient 1 | 相关系数2 Coefficient 2 | 根系生理生化指标 Physiological and biochemical indexes of roots | 相关系数1 Coefficient 1 | 相关系数2 Coefficient 2 | |
---|---|---|---|---|---|---|
丙二醛MDA | -0.490* | -0.508* | 丙二醛MDA | -0.322 | -0.427 | |
过氧化氢H2O2 | -0.722** | -0.883** | 过氧化氢H2O2 | -0.640** | -0.699** | |
脯氨酸Pro | 0.113 | -0.361 | 脯氨酸Pro | 0.285 | 0.664** | |
可溶性糖SS | 0.183 | 0.835** | 可溶性糖SS | 0.253 | -0.151 | |
可溶性蛋白SP | 0.296 | 0.852** | 可溶性蛋白SP | 0.168 | -0.554* | |
游离氨基酸AA | 0.239 | -0.377 | 游离氨基酸AA | 0.094 | 0.215 | |
超氧化歧化酶SOD | 0.481* | -0.236 | 超氧化歧化酶SOD | 0.520** | 0.649** | |
过氧化物酶POD | -0.330 | -0.624** | 过氧化物酶POD | -0.298 | 0.290 | |
过氧化氢酶CAT | 0.377 | -0.216 | 过氧化氢酶CAT | 0.479* | 0.028 | |
还原型谷胱甘肽GSH | -0.223 | 0.841** | 还原型谷胱甘肽GSH | -0.030 | -0.725** | |
抗坏血酸AsA | 0.231 | 0.540* | 抗坏血酸AsA | 0.519** | -0.837** | |
苯丙氨酸解氨酶PAL | -0.620** | 0.441 | 苯丙氨酸解氨酶PAL | 0.138 | 0.338 |
[1] |
张秀荣, 李培武, 汪雪芳, 王旭 . 芝麻种子木质素组分、粗脂肪、粗蛋白含量及相关性分析. 中国油料物学报. 2005,27(3):88-90.
doi: 10.3321/j.issn:1007-9084.2005.03.022 |
ZHANG X R, LI P W, WANG X F, WANG X . Studies on relationship among lignans, oil and protein content in sesame seed. Chinese Journal of Oil Crop Sciences, 2005,27(3):88-90. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2005.03.022 |
|
[2] |
赵应忠 . 芝麻抗氧化物质的种类、检测方法和含量变异. 中国油料作物学报, 2005,27(3):97-102.
doi: 10.3321/j.issn:1007-9084.2005.03.024 |
ZHAO Y Z . The variety, detection method and content variation of antioxidant in sesame. Chinese Journal of Oil Crop Sciences, 2005,27(3):97-102. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2005.03.024 |
|
[3] |
梅鸿献, 魏安池, 刘艳阳, 王春弘, 杜振伟, 郑永战 . 芝麻种质资源芝麻素、蛋白质、脂肪含量变异及其相关分析. 中国油脂, 2013,38(4):87-90.
doi: 10.3969/j.issn.1003-7969.2013.04.023 |
MEI H X, WEI A C, LIU Y Y, WANG C H, DU Z W, ZHENG Y Z . Variation and correlation analysis of sesamin, oil and protein contents in sesame germplasm resources. China Oils and Fats, 2013,38(4):87-90. (in Chinese)
doi: 10.3969/j.issn.1003-7969.2013.04.023 |
|
[4] |
杨湄, 黄凤洪 . 中国芝麻产业现状与存在问题、发展趋势与对策建议. 中国油脂, 2009,34(1):7-12.
doi: 10.3321/j.issn:1003-7969.2009.01.002 |
YANG M, HUANG F H . Situation, problem, development trend and suggestion of sesame industry in China. China Oils and Fats, 2009,34(1):7-12. (in Chinese)
doi: 10.3321/j.issn:1003-7969.2009.01.002 |
|
[5] |
孙建, 乐美旺, 饶月亮, 颜廷献, 颜小文, 周红英 . 江西芝麻产业现状、限制因素、发展潜力与对策分析. 江西农业学报, 2010,22(9):10-15.
doi: 10.3969/j.issn.1001-8581.2010.09.003 |
SUN J, LE M W, RAO Y L, YAN T X, YAN X W, ZHOU H Y . Current situation, limiting factors, developmental potential and countermeasures of sesame industry in Jiangxi. Acta Agriculturae Jiangxi, 2010,22(9):10-15. (in Chinese)
doi: 10.3969/j.issn.1001-8581.2010.09.003 |
|
[6] |
PATHAK N, RAI AK, KUMARI R, THAPA A, BHAT K V . Sesame crop: An underexploited oilseed holds tremendous potential for enhanced food value. Agricultural Sciences, 2014,5:519-529.
doi: 10.4236/as.2014.56054 |
[7] | DOSSA K, NIANG M, ASSOGBADJO A E, CISSÉ N, DIOUF D . Whole genome homology-based identification of candidate genes for drought tolerance in sesame (Sesamum indicum L.). African Journal of Biotechnology, 2016,15(27):1464-1474. |
[8] | 黄道友, 彭廷柏, 陈桂秋, 王克林 . 亚热带红壤丘陵区季节性干旱成因及其发生规律研究. 中国生态农业学报, 2004,12(1):124-126. |
HUANG D Y, PENG T B, CHEN G Q, WANG K L . Study on causes and occurrence rules of seasonal drought in subtropical red soil hilly region. Chinese Journal of Eco-Agriculture, 2004,12(1):124-126. (in Chinese) | |
[9] |
黄道友, 王克林, 黄敏, 陈洪松, 吴金水, 张广平, 彭廷柏 . 我国中亚热带典型红壤丘陵区季节性干旱. 生态学报, 2004,24(11):2516-2523.
doi: 10.3321/j.issn:1000-0933.2004.11.024 |
HUANG D Y, WANG K L, HUANG M, CHEN H S, WU J S, ZHANG G P, PENG T B . Seasonal drought problems in the red soil hilly region of the middle subtropical zone of China. Acta Ecologica Sinica, 2004,24(11):2516-2523. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2004.11.024 |
|
[10] | 王林海, 张艳欣, 危文亮, 张秀荣 . 中国芝麻湿害和旱害发生调查与分析. 中国农学通报, 2011,27(28):301-306. |
WANG L H, ZHANG Y X, WEI W L, ZHANG X R . Investment of waterlogging and drought effect on the sesame production in China. Chinese Agricultural Science Bulletin, 2011,27(28):301-306. (in Chinese) | |
[11] |
DOSSA K, WEI X, LI D H, FONCEKA D, ZHANG Y X, WANG L H, YU J Y, LIAO B S, DIOUF D, CISSÉ N, ZHANG X R . Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology, 2016,16:171.
doi: 10.1186/s12870-016-0859-4 pmid: 4967514 |
[12] |
LI D H, LIU P L, YU J Y, WANG L H, DOSSA K, ZHANG X Y, ZHOU R, WEI X, ZHANG X R . Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology, 2017,17:152.
doi: 10.1186/s12870-017-1099-y pmid: 5594535 |
[13] | 孙建, 饶月亮, 乐美旺, 颜廷献, 颜小文, 周红英 . 干旱胁迫对芝麻生长与产量性状的影响及其抗旱性综合评价. 中国油料作物学报, 2010,32(4):525-533. |
SUN J, RAO Y L, LE M W, YAN T X, YAN X W, ZHOU H Y . Effects of drought stress on sesame growth and yield characteristics and comprehensive evaluation of drought tolerance. Chinese Journal of Oil Crop Sciences, 2010,32(4):525-533. (in Chinese) | |
[14] | MENSAH J K, OBADONI B O, ERUOTOR P G, ONOME- IRIEGUNA F . Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesamum indicum L.). African Journal of Biotechnology, 2006,5(13):1249-1253. |
[15] |
陈培, 汪强, 赵莉, 田东风 . 水分胁迫对芝麻种子萌发特性的影响. 种子, 2012,31(4):83-85.
doi: 10.3969/j.issn.1001-4705.2012.04.024 |
CHEN P, WANG Q, ZHAO L, TIAN D F . Effect of water stress on seed germination characteristics of sesame (Sesamum indicum L.). Seed, 2012,31(4):83-85. (in Chinese)
doi: 10.3969/j.issn.1001-4705.2012.04.024 |
|
[16] |
徐芬芬, 杜佳朋 . 干旱胁迫和盐胁迫对芝麻种子萌发的影响. 种子, 2013,32(11):85-86.
doi: 10.3969/j.issn.1001-4705.2013.11.025 |
XU F F, DU J P . Effect of drought and salt stress on seed germination of sesame. Seed, 2013,32(11):85-86. (in Chinese)
doi: 10.3969/j.issn.1001-4705.2013.11.025 |
|
[17] | 刘文萍, 任果香, 吕伟, 文飞 . 西北地区芝麻抗旱性鉴定研究. 中国农学通报, 2014,30(30):192-198. |
LIU W P, REN G X, LÜ W, WEN F . Identification of drought resistance of sesame in northwest region. Chinese Agricultural Science Bulletin, 2014,30(30):192-198. (in Chinese) | |
[18] | KHATIBY A, VAZIN F, HASSANZADEH M, SHADMEHRI A A . Effect of foliar application with salicylic acid on some morphological and physiological characteristics of sesame (Sesamum indicum L.) under drought stress. Cercetari Agronomice in Moldova, 2016,49(4):35-42. |
[19] |
KIM K S, PARK S H, JENKS M A . Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Journal of Plant Physiology, 2007,164(9):1134-1143.
doi: 10.1016/j.jplph.2006.07.004 pmid: 16904233 |
[20] |
HASSANZADEH M, EBADI A, KIVI M P, ESHGHI A G, SOMARIN S J . Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamun indicum L.) genotypes at early flowering stage. Research Journal of Environmental Sciences, 2009,3(3):345-350.
doi: 10.5194/acp-8-1195-2008 |
[21] |
FAZELI F, GHORBANLI M, NIKNAM V . Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum, 2007,51(1):98-103.
doi: 10.1007/s10535-007-0020-1 |
[22] |
KADKHODAIE A, ZAHEDI M, RAZMJOO J, PESSARAKLI M . Changes in some anti-oxidative enzymes and physiological indices among sesame genotypes (Sesamum indicum L.) in response to soil water deficits under field conditions. Acta Physiologiae Plantarum, 2014,36(3):641-650.
doi: 10.1007/s11738-013-1442-3 |
[23] |
王晓玲 . 水分胁迫对芝麻花期脯氨酸含量的影响. 安徽农学通报, 2007,13(20):66-67.
doi: 10.3969/j.issn.1007-7731.2007.20.025 |
WANG X L . Effect of water stress on proline content of sesame at flowering stage. Anhui Agricultural Science Bulletin, 2007,13(20):66-67. (in Chinese)
doi: 10.3969/j.issn.1007-7731.2007.20.025 |
|
[24] |
高桐梅, 吴寅, 李丰, 曾艳娟, 王东勇, 田媛, 卫双玲 . 苗期水分胁迫对芝麻生长和生理特性的影响. 核农学报, 2017,31(11):2229-2235.
doi: 10.11869/j.issn.100-8551.2017.11.2229 |
GAO T M, WU Y, LI F, ZENG Y J, WANG D Y, TIAN Y, WEI S L . Effects of water stress on physiological characteristics and growth under water stress in seedling of sesame. Journal of Nuclear Agricultural Sciences, 2017,31(11):2229-2235. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.11.2229 |
|
[25] | 严寒, 许本波, 赵福永, 何勇, 姚晓鼎, 田志宏 . 脱落酸和水杨酸对干旱胁迫下芝麻幼苗生理特性的影响. 干旱地区农业研究, 2008,26(6):163-166. |
YAN H, XU B B, ZHAO F Y, HE Y, YAO X D, TIAN Z H . Effects of abscisic acid and salicylic acid on physiological characteristics of sesame seedlings under drought stress. Agricultural Research in the Arid Areas, 2008,26(6):163-166. (in Chinese) | |
[26] | HUSSEIN Y, AMIN G, GAHIN H . Antioxidant activities during drought stress resistance of sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Research Journal of Botany, 2016,11(1):1-8. |
[27] |
NAJAFABADI M Y, EHSANZADEH P . Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica, 2017,55(4):611-622.
doi: 10.1007/s11099-017-0673-8 |
[28] | 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000. ( in Chinese) | |
[29] |
GRIFFITH O W . Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980,106(1):207-212.
doi: 10.1016/0003-2697(80)90139-6 pmid: 7416462 |
[30] |
金丽萍, 崔世茂, 杜金伟, 金彩霞, 吴玉峰, 其日格 . 干旱胁迫对不同生态条件下蒙古扁桃叶片PAL和C4H活性的影响. 华北农学报, 2009,24(5):118-122.
doi: 10.7668/hbnxb.2009.05.025 |
JIN L P, CUI S M, DU J W, JIN C X, WU Y F, QI R G . Effects of drought stress in different ecological conditions of the Prunus mongolica Maxim almond leaves in PAL and C4H activity. Acta Agriculturae Boreali-Sinica, 2009,24(5):118-122. (in Chinese)
doi: 10.7668/hbnxb.2009.05.025 |
|
[31] | 张蜀秋, 李云, 武维华 . 植物生理学实验技术教程. 北京: 科学出版社, 2011. |
ZHANG S Q, LI Y, WU W H. Course of Experimental Techniques in Plant Physiology. Beijing: Science Press, 2011. ( in Chinese) | |
[32] | 李海玲, 彭书明, 李凛, 张雪梅 . 4中常用蛋白浓度测定方法的比较. 中国生化药物杂志, 2008,29(4):277-278. |
LI H L, PENG S M, LI L, ZHANG X M . Studies on four conventional methods for protein determination. Chinese Journal of Biochemical Pharmaceutics, 2008,29(4):277-278. (in Chinese) | |
[33] | 董守坤, 马玉玲, 李爽, 董娜, 刘丽君 . 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018,49(1):10-18. |
DONG S K, MA Y L, LI S, DONG N, LIU L J . Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. Journal of Northeast Agricultural University, 2018,49(1):10-18. (in Chinese) | |
[34] |
曲涛, 南志标 . 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008,17(2):126-135.
doi: 10.3321/j.issn:1004-5759.2008.02.018 |
QU T, NAN Z B . Research progress on respones and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinca, 2008,17(2):126-135. (in Chinese)
doi: 10.3321/j.issn:1004-5759.2008.02.018 |
|
[35] |
张翠梅, 师尚礼, 吴芳 . 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018,51(5):868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
ZHANG C M, SHI S L, WU F . Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018,51(5):868-882. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
|
[36] |
GRIFFITHS H, PARRY M A J . Plant responses to water stress. Annals of Botany, 2002,89(7):801-802.
doi: 10.1093/aob/mcf159 pmid: 4233812 |
[37] |
FAROOQ M, WAHID A, KOBAYASHI N, FUJITA D, BASRA S M A . Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 2009,29(1):185-212.
doi: 10.1051/agro:2008021 |
[38] | BOWLER C, MONTAGU V M, INZE D . Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology & Plant Molecular Biology, 1992,43(1):83-116. |
[39] | 吴金山, 张景欢, 李瑞杰, 李英英, 高豪杰, 赵庆杰 . 植物对干旱胁迫的生理机制及适应性研究进展. 山西农业大学学报(自然科学版), 2017,37(6):452-456. |
WU J S, ZHANG J H, LI R J, LI Y Y, GAO H J, ZHAO Q J . The plant’s physiological mechanism and adaptability to drought stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2017,37(6):452-456. (in Chinese) | |
[40] |
王启明, 徐心诚, 马原松, 吴诗光 . 干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系. 干旱地区农业研究, 2005,23(4):98-102.
doi: 10.3321/j.issn:1000-7601.2005.04.020 |
WANG Q M, XU X C, MA Y S, WU S G . Influences of drought stress on physiological and biochemical characters of different soybean varieties in flowering period. Agricultural Research in the Arid Areas, 2005,23(4):98-102. (in Chinese)
doi: 10.3321/j.issn:1000-7601.2005.04.020 |
|
[41] |
揭雨成, 黄丕生, 李宗道 . 干旱胁迫下苎麻的生理生化变化与抗旱性的关系. 中国农业科学, 2000,33(6):33-39.
doi: 10.3321/j.issn:0578-1752.2000.06.006 |
JIE Y C, HUANG P S, LI Z D . Relationship between physiological biochemical changes of ramine under drought stress and drought resistance. Scientia Agricultura Sinica, 2000,33(6):33-39. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2000.06.006 |
|
[42] |
白鹏, 冉春燕, 谢小玉 . 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014,47(18):3566-3576.
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
BAI P, RAN C Y, XIE X Y . Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2014,47(18):3566-3576. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
|
[43] |
BADGER M R . Photosynthetic oxygen exchanges. Annual Replant Physiology, 1985,36:27-53.
doi: 10.1146/annurev.pp.36.060185.000331 |
[44] |
SEEL W E, HENDY G A F, LEE J A . Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. Journal of Experimental Botany, 1992,43:1031-1035 .
doi: 10.1093/jxb/43.8.1031 |
[45] |
刘佳, 徐秉良, 薛应钰, 张树武, 陈荣贤 . 美洲南瓜(Cucurbita pepo)种皮苯丙氨酸解氨酶基因克隆与表达分析. 中国农业科学, 2014,47(6):1216-1226.
doi: 10.3864/j.issn.0578-1752.2014.06.018 |
LIU J, XU B L, XUE Y Y, ZHANG S W, CHEN R X . Cloning and expression analysis of PAL gene in seed coat of Cucurbita pepo. Scientia Agricultura Sinica, 2014,47(6):1216-1226. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.06.018 |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[3] | 房昊源, 杨亮, 王洪壮, 曹锦承, 任万平, 魏胜娟, 颜培实. 夏季横向交互送风系统对肉牛生理和生产性能的影响[J]. 中国农业科学, 2022, 55(5): 1025-1036. |
[4] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[5] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[6] | 琚铭, 苗红梅, 黄盈盈, 马琴, 王慧丽, 王翠英, 段迎辉, 韩秀花, 张海洋. 芝麻种间杂交亲和性差异及杂种生物学特征分析[J]. 中国农业科学, 2022, 55(20): 3897-3909. |
[7] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[8] | 汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320. |
[9] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[10] | 孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551. |
[11] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[12] | 崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232. |
[13] | 马拴红, 万炯, 梁瑞清, 张雪海, 邱小倩, 孟淑君, 徐宁坤, 林源, 党昆泰, 王琪月, 赵嘉雯, 丁冬, 汤继华. 玉米开花期转录因子候选基因的关联分析[J]. 中国农业科学, 2022, 55(1): 12-25. |
[14] | 朱芳芳,董亚辉,任真真,王志勇,苏慧慧,库丽霞,陈彦惠. 过表达ZmIBH1-1提高玉米苗期抗旱性[J]. 中国农业科学, 2021, 54(21): 4500-4513. |
[15] | 薛仁风,丰明,黄宇宁,Matthew BLAIR,Walter MESSIER,葛维德. PvEG261对普通菜豆镰孢菌枯萎病抗性和抗旱性的影响[J]. 中国农业科学, 2021, 54(20): 4274-4285. |
|