中国农业科学 ›› 2020, Vol. 53 ›› Issue (22): 4634-4645.doi: 10.3864/j.issn.0578-1752.2020.22.010
向伟1,王雷1,刘天奇1,李诗豪1,翟中兵3,李成芳1,2,*()
收稿日期:
2020-03-21
接受日期:
2020-05-28
出版日期:
2020-11-16
发布日期:
2020-11-28
通讯作者:
李成芳
作者简介:
向伟,E-mail: 基金资助:
XIANG Wei1,WANG Lei1,LIU TianQi1,LI ShiHao1,ZHAI ZhongBing3,LI ChengFang1,2,*()
Received:
2020-03-21
Accepted:
2020-05-28
Online:
2020-11-16
Published:
2020-11-28
Contact:
ChengFang LI
摘要: 【目的】生物炭作为比表面积大、富含有多种营养元素的一种物质已被广泛应用于农业生产。弄清生物炭与化肥氮配合施用对稻田温室气体排放和氮肥利用率的综合影响,为合理使用生物炭提供科学依据。【方法】在武穴市花桥镇进行两年大田试验,设置4个处理,即不施氮肥(CK)、常规施氮(180 kg·hm -2)(IF)、常规施氮+10 t·hm -2生物炭(IF+C)、减氮30%+10 t·hm -2生物炭(RIF+C)。采用静态箱-气相色谱法对2018和2019年水稻生长季节稻田CH4和N2O排放通量进行监测,并测定水稻产量,探讨生物炭配施不同量无机氮对稻田CH4和N2O排放、水稻产量以及氮肥利用率的影响。【结果】(1)稻季CH4和N2O排放呈现明显的季节性变化规律。CH4排放峰值主要出现在分蘖期和齐穗期,N2O排放峰值主要出现在氮肥施用和排水后。2018和2019年稻季各处理CH4排放通量分别为0.01—48.97 mg·m -2·h -1和0.36—18.08 mg·m -2·h -1,N2O排放通量分别为-0.002—0.17 mg·m -2·h -1和0.01—0.28 mg·m -2·h -1。2018年各处理CH4和N2O的平均排放通量分别为6.17—7.16 mg·m -2·h -1和0.02—0.04 mg·m -2·h -1,2019年的分别为5.16—5.83 mg·m -2·h -1和0.05—0.08 mg·m -2·h -1。(2)与CK相比,无机氮肥的施用对CH4排放没有影响,但显著提高了N2O排放,增幅为32.6%—113.0%。与IF处理相比,生物炭与无机氮配施(IF+C、RIF+C)显著降低N2O排放,在2018年降幅为33.4%—43.1%,2019年为37.0%—39.5%,但对CH4排放的影响不显著,因此对全球增温潜势的影响不显著。生物炭与无机氮配施处理IF+C与RIF+C间CH4和N2O排放差异不显著。CH4排放是综合增温潜势(GWP)的主要贡献者,对GWP的贡献达84.4%—95.2%。(3)氮肥施用显著提高水稻产量,增幅达4.0%—6.0%。与IF处理相比,生物炭处理(IF+C、RIF+C)显著增加水稻产量,增幅达9.9%—11.9%。生物炭与无机氮配施处理IF+C与RIF+C间水稻产量差异不显著。与IF处理相比,IF+C、RIF+C处理氮肥利用率显著增加了7.7%—8.1%,且RIF+C的氮肥偏生产力两年分别增加了57.1%、52.3%。【结论】减氮30%配施生物炭能有效地降低稻田N2O排放、增加水稻产量、提高氮肥利用率,是一项可持续的农艺措施。但生物炭对稻田温室气体减排的效应还要进一步研究探讨。
向伟,王雷,刘天奇,李诗豪,翟中兵,李成芳. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22): 4634-4645.
XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields[J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
表2
2018年和2019年不同处理下CH4、N2O排放通量的重复测定方差分析"
气体 Gas | 处理 Treatment | 2018 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
df | MS | F | P | df | MS | F | P | ||
CH4 | 时间 Time | 12 | 420.63 | 7.57 | <0.001 | 12 | 74.19 | 3.31 | <0.001 |
处理 Treatment | 4 | 74.62 | 1.34 | 0.263 | 4 | 9.38 | 0.42 | 0.74 | |
时间×处理 Time×Treatment | 48 | 156.33 | 7.44 | <0.001 | 48 | 6.22 | 0.39 | 0.76 | |
N2O | 时间 Time | 12 | 0.015 | 8.32 | <0.001 | 12 | 0.031 | 9.5 | <0.001 |
处理 Treatment | 4 | 0.01 | 5.589 | 0.001 | 4 | 0.006 | 1.72 | 0.17 | |
时间×处理 Time×Treatment | 48 | 0.003 | 1.90 | 0.009 | 48 | 0.005 | 1.62 | 0.04 |
表3
不同处理稻田温室气体累积排放量、综合温室效应及水稻产量的变化"
年份 Year | 处理 Treatment | CH4累积排放量 Cumulative CH4 emission (kg·hm-2) | N2O累积排放量 Cumulative N2O emission (kg·hm-2) | 综合增温潜势 Global warming potential (kg·hm-2) | 水稻产量 Yield (t·hm-2) |
---|---|---|---|---|---|
2018 | CK | 77.62±5.27 a | 0.39±0.01 b | 2275.53±151.57 a | 8.99±0.22 b |
IF | 76.84±5.42 a | 0.82±0.17 a | 2369.47±108.77 a | 9.33±0.15 b | |
IF+C | 84.93±4.67 a | 0.50±0.03 b | 2510.01±130.66 a | 9.69±0.26 ab | |
RIF+C | 78.66±1.71 a | 0.48±0.00 b | 2330.26±47.84 a | 10.26±0.35 a | |
2019 | CK | 58.45±9.80 a | 0.73±0.06 ab | 1829.64±258.60 a | 8.76±0.21 c |
IF | 57.12±4.14 a | 0.96±0.02 a | 1855.01±115.35 a | 9.29±0.23 bc | |
IF+C | 59.51±5.65 a | 0.61±0.04 b | 1827.38±167.35 a | 10.31±0.30 a | |
RIF+C | 62.04±5.88 a | 0.58±0.07 b | 1891.93±179.76 a | 9.83±0.18 ab |
表4
不同处理水稻吸氮量、氮肥利用率及氮肥偏生产力的变化"
年份 Year | 处理 Treatment | 吸氮量 Nitrogen uptake (kg·hm-2) | 氮肥利用率 Nitrogen use efficiency (%) | 氮肥偏生产力 Nitrogen agronomic efficiency (kg·kg-1) |
---|---|---|---|---|
2018 | CK | 78.46±5.77 c | – | – |
IF | 135.80±4.26 b | 31.85±4.10 b | 51.82±0.82 b | |
IF+C | 149.58±3.04 a | 39.51±2.93 a | 52.78±1.42 b | |
RIF+C | 129.40±1.24 b | 40.42±1.70 a | 81.40±2.75 a | |
2019 | CK | 80.5±7.29 c | – | – |
IF | 134.69±5.25 b | 30.13±2.92b | 51.82±0.82 b | |
IF+C | 148.63±0.50 a | 37.85±0.47 a | 52.78±1.42 b | |
RIF+C | 128.62±3.14 b | 38.16±4.31 a | 81.40±2.75 a |
[1] | STOCKER T, QIN D, PLATTNER G K, TIGNOR M, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of the Intergovernmental Panel on Climate Change of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013. |
[2] |
SMITH P, MARTINO D, CAI Z C, GWARY D, JANZEN H, KUMAR P, MCCARL B, OGLE S, MARA F, RICE C, SCHOLES B, SIROTENKO C, HOWDEN M, MCALLISTER T, PAN G, ROMANENKOV V, SCHNEIDER U, TOWPRAYOON S . Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2006,118(1):6-28.
doi: 10.1016/j.agee.2006.06.006 |
[3] |
FENG Y F, SUN H J, XUE L H, LIU Y, GAO Q, LU P K, YANG L Z . Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 2017,168:1277-1284.
doi: 10.1016/j.chemosphere.2016.11.151 pmid: 27919533 |
[4] |
WROBEL-TOBISZEWSKA A, BOERSMA M, SARGISON J, ADAMS P, SINGH B, FRANKS S, BRICH C J, CLOSE C . Nutrient changes in potting mix and eucalyptus nitens leaf tissue under macadamia biochar amendments. Journal of Forestry Research, 2018,29(2):383-393.
doi: 10.1007/s11676-017-0437-0 |
[5] |
LEIGH D. BURREL, ZEHETNER F, RAMPAZZO N, WIMMER B, SOIA G . Long-term effects of biochar on soil physical properties. Geoderma, 2016,282:96-102.
doi: 10.1016/j.geoderma.2016.07.019 |
[6] |
HENSLEY M D, GU S, HAGAN E B . Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 2011,15(8):3539-3551.
doi: 10.1016/j.rser.2011.05.010 |
[7] |
陈温福, 张伟明, 孟军 . 农用生物炭研究进展与前景. 中国农业科学, 2013,46(16):3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003 |
CHEN W F, ZHANG W M, MENG J . Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013,46(16):3324-3333. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.16.003 |
|
[8] |
LAIRD D, FLEMING P, WANG B Q, HORTON R, KARLEN D . Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma, 2010,158(3):436-442.
doi: 10.1016/j.geoderma.2010.05.012 |
[9] |
MIZUTA K, MATSUMOTO T, HATATE Y, KEIICHI N, TOMOKI N . Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 2004,95(3):255-257.
doi: 10.1016/j.biortech.2004.02.015 pmid: 15288267 |
[10] |
MARK P, MCHENRY . Soil organic carbon, biochar, and applicable research results for increasing farm productivity under Australian agricultural conditions. Communications in Soil Science and Plant Analysis, 2011,42(10):1187-1199.
doi: 10.1080/00103624.2011.566963 |
[11] |
OLMO M, ALBURQUERQUE J A, BARRON V, CAMPILLO M C, CALLARDO A, FUENTES M, VILLAR R . Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 2014,50(8):1177-1187.
doi: 10.1007/s00374-014-0959-y |
[12] | 曲晶晶, 郑金伟, 郑聚锋, 张旭辉, 李恋卿, 潘根兴, 纪雄辉, 余喜初 . 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响. 生态与农村环境学报, 2012,28(3):288-293. |
QU J J, ZHENG J W, ZHENG J F, ZHANG X H, LI L Q, PAN G X, JI X H, YU X C . Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice. Journal of Ecology and Rural Environment, 2012,28(3):288-293. (in Chinese) | |
[13] |
张爱平, 刘汝亮, 高霁, 张晴雯, 陈哲, 惠锦卓, 杨世琦, 杨正礼 . 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响. 植物营养与肥料学报, 2015,21(5):1352-1360.
doi: 10.11674/zwyf.2015.0531 |
ZHANG A P, LIU R L, GAO J, ZHANG Q W, CHEN Z, Hui J Z, YANG S Q, YANG Z L . Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia yellow river irrigation region. Journal of Plant Nutrition and Fertilizer, 2015,21(5):1352-1360. (in Chinese)
doi: 10.11674/zwyf.2015.0531 |
|
[14] |
ASAI H, SAMSON B K, STEPHAN H M, STEPHAN H M, HAEFELE M, SONGYIKHANGSUTHOR K, HOMMA K, KIYONO Y, INOUE Y, SHIRAIWA T, HORIE T . Biochar amendment techniques for upland rice production in northern Laos 1. soil physical properties, leaf SPAD and grain yield. Field Crops Research, 2009,111(1/2):81-84.
doi: 10.1016/j.fcr.2008.10.008 |
[15] |
FENG Y Z, XU Y P, YU Y C, XIE Z B, LIN X G . Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 2011,46:80-88.
doi: 10.1016/j.soilbio.2011.11.016 |
[16] |
XIE Z B, XU Y P, LIU G, ZHU J G, TU C, JAMES E, AMONETTE , CADISCH G, JEAN W H Y, HU S J. Impact of biochar application on nitrogen of rice, greenhouse gas emission and soil organic dynamics in two paddy soil of China. Plant and Soil, 2013,370:527-540.
doi: 10.1007/s11104-013-1636-x |
[17] |
李露, 周自强, 潘晓健, 李博, 熊正琴 . 氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响. 植物营养与肥料学报, 2015,21(5):1095-1103.
doi: 10.11674/zwyf.2015.0501 |
LI L, ZHOU Z Q, PAN X J, LI B, XIONG Z Q . Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system. Journal of Plant Nutrition and Fertilizer, 2015,21(5):1095-1103. (in Chinese)
doi: 10.11674/zwyf.2015.0501 |
|
[18] | 廖萍, 眭锋, 汤军, 曾勇军, 吴自明, 石庆华, 黄山 . 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018,32(9):1821-1830. |
LIAO P, SUI F, TANG J, ZENG Y J, WU Z M, SHI Q H, HUANG S . Effects of biochar amendment on the global warming potential and greenhouse gas intensity in a double rice-cropping system. Journal of Nuclear Agricultural Sciences, 2018,32(9):1821-1830. (in Chinese) | |
[19] |
张斌, 刘晓雨, 潘根兴, 郑聚锋, 池忠志, 李恋卿, 张旭辉, 郑金伟 . 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化. 中国农业科学, 2012,45(23):4844-4853.
doi: 10.3864/j.issn.0578-1752.2012.23.011 |
ZHANG B, LIU X Y, PAN G X, ZHENG J F, CHI Z Z, LI L Q, ZHANG X H, ZHENG J W . Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles. Scientia Agricultura Sinica, 2012,45(23):4844-4853. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.23.011 |
|
[20] | 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000: 44-49. |
BAO S D. Soil and Agrochemistry Analysis. Beijing: China Agriculture Press, 2000: 44-49. (in Chinese) | |
[21] | 董玉兵, 吴震, 李博, 许欣, 熊正琴 . 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响. 植物营养与肥料学报, 2017,23(5):1258-1267. |
DONG Y B, WU Z, LI B, XU X, XIONG Z X . Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system. Journal of Plant Nutrition and Fertilizer, 2017,23(5):1258-1267. (in Chinese) | |
[22] |
LI C F, ZHANG Z S, GUO L J, CAI M L, CAO C G . Emissions of CH4, and CO2, from double rice cropping systems under varying tillage and seeding methods. Atmospheric Environment, 2013,80(12):438-444.
doi: 10.1016/j.atmosenv.2013.08.027 |
[23] | CONRAD R . Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 2007,96:1-63. |
[24] | JEFFERY S, VERHEIJEN F, KAMMANN C, ABALOS D . Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology & Biochemistry, 2016,101:251-258. |
[25] |
LIU T Q, LI S H, GUO L G, CAO C G, LI C F, ZHAI Z B, ZHOU J Y, MEI YM, KE H J . Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. Journal of Cleaner Production, 2020,263:121322.
doi: 10.1016/j.jclepro.2020.121322 |
[26] | 刘芳, 李天安, 樊小林 . 华南地区覆膜旱种稻田甲烷排放及其与土壤水分和温度的关系. 农业工程学报, 2013,29:110-116. |
LIU F, LI T A, FAN X L . Methane emission and its relationship with soil temperature and moisture during rice growth in film mulching upland rice field in south China. Transactions of the Chinese Society of Agricultural Engineering, 2013,29:110-116. (in Chinese) | |
[27] |
SCHIMEL J . Global change: rice, microbes and methane. Nature, 2000,403(6768):375-377.
doi: 10.1038/35000325 pmid: 10667774 |
[28] |
FAN D J, LIU T Q, SHENG F, LI S H, CAO C G, LI C F. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields. Biology and Fertility of Soils, 2020, https://doi.org/10.1007/s00374-020-01447-y .
doi: 10.1007/s00374-013-0808-4 pmid: 26069355 |
[29] |
WANG J Y, PAN X J, LIU Y L, ZHANG XL, XIONG Z Q . Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil, 2012,360:287-298.
doi: 10.1007/s11104-012-1250-3 |
[30] |
KNOBLAUCH C, MAARIFAT A, PFEIFFER E, HAEFELE S . Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology and Biochemistry, 2011,43(9):1768-1778.
doi: 10.1016/j.soilbio.2010.07.012 |
[31] |
SINGLA A, INUBUSHI K . Effect of biochar on CH4 and N2O emission from soils vegetated with paddy. Paddy and Water Environment, 2014,12(1):239-243.
doi: 10.1007/s10333-013-0357-3 |
[32] |
ZHANG A, BIAN R, PAN G, CUI L, HUSSAIN Q, LI L, ZHENG J, ZHENG J, ZHNAG X, HAN X, YU X . Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Research, 2012,127:153-160.
doi: 10.1016/j.fcr.2011.11.020 |
[33] | 谢军飞, 李玉娥 . 农田土壤温室气体排放机理与影响因素研究进展. 中国农业气象, 2002(4):48-53. |
XIE J F, LI Y E . A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Chinese Journal of Agrometeorology, 2002(4):48-53. (in Chinese) | |
[34] | SONG X Z, PAN G X, ZHANG C, ZHANG L, WANG H L. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis. Ecosystem Health and Sustainability, 2016, 2(2): 10.1002/ehs2.1202. |
[35] | 程功, 刘廷玺, 李东方, 段利民, 王冠丽 . 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响. 中国生态农业学报(中英文), 2019,27(07):1004-1014. |
CHENG G, LIU T X, LI D F, DUAN L M, WANG G L . Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions. Chinese Journal of Eco-Agriculture, 2019,27(7):1004-1014. (in Chinese) | |
[36] |
ZHANG A F, CUI L Q, PAN G X, LI L Q, HUSSAIN Q, ZHANG X H, ZHENG J W, CROWLEY D . Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 2010,139:469-475.
doi: 10.1016/j.agee.2010.09.003 |
[37] | 刘杰云, 邱虎森, 沈健林, 汤宏, 王聪 . 不同生物质炭对稻田土壤CH4排放的影响研究进展. 生态与农村环境学报, 2016,32(4) : 525-530. |
LIU J Y, QIU H S, SHEN J L, TANG H, WANG C . Research progress on the effects of different biomass charcoal on soil CH4 emissions in paddy fields. Journal of Ecology and Rural Environment, 2016,32(4) : 525-530. (in Chinese) | |
[38] | 宋开付, 于海洋, 张广斌, 徐华, 吕世华, 马静 . 川中丘陵区覆膜再生稻田N2O排放规律研究. 农业环境科学学报, 2019,38(6):1381-1387. |
SONG K F, YU H Y, ZHANG G B, XU H, LÜ S H, MA J . N2O emissions from ratoon paddy fields covered with plastic film mulching in the hilly area of central Sichuan, China. Journal of Agro-Environment Science, 2019,38(6):1381-1387. (in Chinese) | |
[39] |
YUAN J H, XU R K, ZHANG H . The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 2011,102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018 |
[40] |
CASE S D C, MCNAMARA N P, REAY D S, STOTT A W, GRANT H K, WHITAKER J . Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biology & Biochemistry, 2015,81(2):178-185.
doi: 10.1016/j.soilbio.2014.11.012 |
[41] |
吴震, 董玉兵, 熊正琴 . 生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响. 应用生态学报, 2018,29(1):141-148.
doi: 10.13287/j.1001-9332.201801.028 pmid: 29692022 |
WU Z, DONG Y B, XIONG Z Q . Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system. Chinese Journal of Applied Ecology, 2018,29(1):141-148. (in Chinese)
doi: 10.13287/j.1001-9332.201801.028 pmid: 29692022 |
|
[42] | 刘玉学, 王耀锋, 吕豪豪, 陈义, 唐旭, 吴春艳, 钟哲科, 杨生茂 . 生物质炭化还田对稻田温室气体排放及土壤理化性质的影响. 应用生态学报, 2013,24(8):2166-2172. |
LIU Y X, WANG Y F, LÜ H H, CHEN Y, TANG X, WU C Y, ZHONG Z K, YANG S M . Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties. Chinese Journal of Applied Ecology, 2013,24(8):2166-2172. (in Chinese) | |
[43] | 罗晓琦, 冯浩, 刘晶晶, 张阿凤 . 生物炭施用下中国农田土壤N2O排放的Meta分析. 中国生态农业学报, 2017,25(09):1254-1265. |
LUO X Q, FENG H, LIU J J, ZHANG A F . Meta-analysis on farmland soil N2O emissions under biochar application in China. Chinese Journal of Eco-Agriculture, 2017, 25(9):1254-1265. (in Chinese) | |
[44] |
DONG D, FENG Q, MCGROUTHER K, YANG M, WANG H L, WU W X . Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 2015,15(1):153-162.
doi: 10.1007/s11368-014-0984-3 |
[45] | 陈琳, 乔志刚, 李恋卿, 潘根兴 . 施用生物质炭基肥对水稻产量及氮素利用的影响. 生态与农村环境学报, 2013,29(5):671-675. |
CHEN L, QIAO Z G, LI L Q, PAN G X . Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2013,29(5):671-675. (in Chinese) | |
[46] | 宋大利, 习向银, 黄绍敏, 张水清, 袁秀梅, 黄伏森, 刘阳, 王秀斌 . 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响. 植物营养与肥料学报, 2017,23(2):369-379. |
SONG D L, XI X Y, HUANG S M, ZHANG S Q, YUAN X M, HUANG F S, LIU Y, WANG X B . Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2017, 23(2):369-379. (in Chinese) | |
[47] |
LI B, FAN C H, ZHANG H, CHEN Z Z, SUN LY, XIONG Z Q . Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment, 2015,100:10-19.
doi: 10.1016/j.atmosenv.2014.10.034 |
[48] | 张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010(11):2713-2717. |
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010(11):2713-2717. (in Chinese) | |
[49] | 高悦, 张爱平, 杜章留, 刘汝亮, 洪瑜, 胡世民, 杨正礼 . 优化施氮条件下添加生物炭对宁夏灌区土壤条件和水稻生长的影响. 中国农业气象, 2019,40(5):327-336. |
GAO Y, ZHANG A P, DU Z L, LIU R L, HONG Y, HU S M, YANG Z L . Effects of biochar on soil conditions and rice growth in Ningxia irrigated area under optimized nitrogen application conditions. Chinese Journal of Agrometeorology, 2019,40(5):327-336. (in Chinese) | |
[50] | QIN X, LI Y, HONG W, LIU C, LI J L, WAN Y F, GAO Q Z, FAN F L, LIAO Y L . Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Science of the Total Environment, 2016,569:1390-1401. |
[51] |
DONG H B, YAO Z S, ZHENG X H, MEI B L, XIE B H, WANG R, DENG J, CUI F, ZHU J G . Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmospheric Environment, 2011,45:1095-1101.
doi: 10.1016/j.atmosenv.2010.11.039 |
[52] | PITTELKOW C M, ADVIENTO-BORBE M A, HILL J E, KESSEL C V, BRUCE A,. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems & Environment, 2013,177:10-20. |
[53] |
LAIRD D A, FLEMING P, DAVIS D D, HORTON R, WANG B Q, DOUGLAS L, KARLEN. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010,158(3/4):443-449.
doi: 10.1016/j.geoderma.2010.05.013 |
[54] |
HAEFELE S M, KONBOON Y, WONGBOON W, AMARANTE S, MAARIFAT A A, PFEIFFER E M, KNOBLAUCH C . Effects and fate of biochar from rice residues in rice-based systems. Field Crop Research, 2011,121(3):430-440.
doi: 10.1016/j.fcr.2011.01.014 |
[55] | 王悦满, 冯彦房, 杨林章, 刘杨, 侯朋福, 李辉信, 薛利红 . 水热及裂解生物炭对水稻产量及氮素利用率的影响. 生态与农村环境学报, 2018,34(8):755-761. |
WANG Y M, FENG Y F, YANG L Z, LIU Y, HOU P F, LI H X, XUE L F . Effects of hydrochar and pyrochar on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2018,34(8):755-761. (in Chinese) | |
[56] | 眭锋, 廖萍, 黄山, 曾勇军, 石庆华 . 施用生物炭对双季水稻产量和氮素吸收的影响. 核农学报, 2018,32(10):2062-2068. |
SUI F, LIAO P, HUANG S, ZENG Y J, SHI Q H . Effects of biochar amendment on yield and nitrogen uptake in a double rice-cropping system. Journal of Nuclear Agricultural, 2018,32(10):2062-2068. (in Chinese) | |
[57] | 王智慧, 唐春, 赵长江, 杨克军, 李佐同, 王洪义, 殷大伟 . 生物炭与肥料配施对土壤养分及玉米产量的影响. 玉米科学, 2018,26(6):146-151, 159. |
WANG Z H, TANG C, ZHAO C J, YANG K J, LI Z T, WANG H Y, YIN D W . Effects of biochar and chemical fertilizer interaction on soil nutrient and maize yield. Journal of Maize Sciences, 2018,26(06):146-151,159. (in Chinese) |
[1] | 王树会,陶雯,梁硕,张旭博,孙楠,徐明岗. 长期施用有机肥情景下华北平原旱地土壤固碳及N2O排放的空间格局[J]. 中国农业科学, 2022, 55(6): 1159-1171. |
[2] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[3] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
[4] | 卢秉林,车宗贤,张久东,包兴国,吴科生,杨蕊菊. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响[J]. 中国农业科学, 2022, 55(12): 2384-2397. |
[5] | 彭碧琳,李妹娟,胡香玉,钟旭华,唐湘如,刘彦卓,梁开明,潘俊峰,黄农荣,傅友强,胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响[J]. 中国农业科学, 2021, 54(7): 1424-1438. |
[6] | 张丽媛,吕金东,石欣悦,虞娜,邹洪涛,张玉玲,张玉龙. 灌溉下限对设施土壤N2O和NO排放特征的影响[J]. 中国农业科学, 2021, 54(5): 992-1002. |
[7] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[8] | 顾博文,杨劲峰,鲁晓玲,吴怡慧,李娜,刘宁,安宁,韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响[J]. 中国农业科学, 2021, 54(21): 4552-4561. |
[9] | 姚凡云,刘志铭,曹玉军,吕艳杰,魏雯雯,吴兴宏,王永军,谢瑞芝. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680-3690. |
[10] | 庄姗,林伟,丁军军,郑欠,寇馨月,李巧珍,李玉中. 不同根系分泌物对土壤N2O排放及同位素特征值的影响[J]. 中国农业科学, 2020, 53(9): 1860-1873. |
[11] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[12] | 邬磊,何志龙,汤水荣,吴限,张文菊,胡荣桂. 稻田转为菜地初始阶段温室气体排放特征[J]. 中国农业科学, 2020, 53(24): 5050-5062. |
[13] | 李永华,武雪萍,何刚,王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应[J]. 中国农业科学, 2020, 53(23): 4879-4890. |
[14] | 邹文秀,韩晓增,陆欣春,陈旭,郝翔翔,严君. 秸秆还田后效对玉米氮肥利用率的影响[J]. 中国农业科学, 2020, 53(20): 4237-4247. |
[15] | 董成,陈智勇,谢迎新,张阳阳,缑培欣,杨家蘅,马冬云,王晨阳,郭天财. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响[J]. 中国农业科学, 2020, 53(19): 4024-4034. |
|