[1] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1819(2): 86-96.
[2] Krizek B A. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development. Journal of Experimental Botany, 2015, 66(15): 4537-4549.
[3] Zumajo-Cardona C, Pabón-Mora N. Evolution of the APETALA2 gene lineage in seed plants. Molecular Biology and Evolution, 2016, 33(7): 1818-1832.
[4] Horstman A, Willemsen V, Boutilier K, Heidstra R. AINTEGUMENTA-LIKE proteins: Hubs in a plethora of networks. Trends in Plant Science, 2014, 19(3): 146-157.
[5] Mudunkothge J S, Krizek B A. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function. The Plant Journal, 2012, 71(1): 108-121.
[6] Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W, Gerentes D, Perez P, Smyth D R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 1996, 8(2): 155-168.
[7] Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 1996, 8(2): 137-153.
[8] Mizukami Y, Fischer R L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the USA, 2000, 97(2): 942-947.
[9] Krizek B, Bequette C, Xu K, Blakley I, Fu Z, Stratmann J, Loraine A. RNA-Seq links the transcription factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to cell wall remodeling and plant defense pathways. Plant Physiology, 2016, 171(3): 2069-84.
[10] Yamaguchi N, Jeong C W, Nole-Wilson S, Krizek B A, Wagner D. AINTEGUMENTA and AINTEGUMENTA-LIKE6/ PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiology, 2016, 170(1): 283-293.
[11] Hu Y, Xie Q, Chua N H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. The Plant Cell, 2003, 15(9): 1951-1961.
[12] Krizek B A. Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis. BMC Research Notes, 2011, 4(1): 176.
[13] Krizek B A. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. Journal of Experimental Botany, 2011, 62(10): 3311-3319.
[14] Chialva C, Eichler E, Grissi C, Muñoz C, Gomez- Talquenca S, Martínez-Zapater J M, Lijavetzky D. Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size. Plant Molecular Biology, 2016: 1-14.
[15] Smaczniak C, Immink R G H, Muiño J M, Blanvillain R, Busscher M, Busscher-Lange J, Dinh Q D, Liu S, Westphal A H, Boeren S, Parcy F, Xu L, Carles C C, Angenent G C, Kaufmann K. Characterization of MADS- domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences of the USA, 2012, 109(5): 1560-1565.
[16] Dewitte W, Riou-Khamlichi C, Scofield S, Healy J, Jacqmard A, Kilby N, Murray J. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell, 2003, 15(1): 79-92.
[17] Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. Journal Of Experimental Botany, 2011, 62(2): 815-823.
[18] Yamaguchi N, Wu M-F, Winter C M, Berns M C, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek B A, Wagner D. A molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 2013, 24(3): 271-282.
[19] Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan M A, Wang L, Hong B, Gao J. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal, 2014, 78(4): 578-590.
[20] 杨娜, 郭维明, 陈发棣, 房伟民. 光周期对秋菊品种’神马’花芽分化和开花的影响. 园艺学报, 2007, 34(4): 965-972.
YANG N, GUO W M, CHEN F D, FANG W M. Effects of photoperiod on floral bud differentiation and flowering of Chrysanthemum morifolium Ramat. ‘Jinba’. Acta Horticulturae Sinica, 2007, 34(4): 965-972. (in Chinese)
[21] Jofuku K D, Den Boer B, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 1994, 6(9): 1211-1225.
[22] Krizek B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Research, 2003, 31(7): 1859-1868.
[23] Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A, Nakamura K. ACTIVATOR of Spomin::LUC1/WRINKLED1 of Arabidopsis thaliana Transactivates Sugar-inducible Promoters. Plant and Cell Physiology, 2005, 46(4): 547-556.
[24] Nole-Wilson S, Krizek B A. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Research, 2000, 28(21): 4076-4082.
[25] 盛慧, 秦智伟, 李文滨, 周秀艳, 武涛, 辛明. 黄瓜生长素反应因子(ARF)家族鉴定及表达特异性分析. 中国农业科学, 2014, 47(10): 1985-1994.
SHENG H, QIN Z W, LI W B, ZHOU X Y, WU T, XIN M. Genome-wide identification and expression analysis of auxin response factor (ARF) family in cucumber. Scientia Agricultura Sinica, 2014, 47(10): 1985-1994. (in Chinese)
[26] Müller B, Sheen J. Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature, 2008, 453(7198): 1094-1097.
[27] Nole-Wilson S, Tranby T L, Krizek B A. AINTEGUMENTA- like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology, 2005, 57(5): 613-628.
[28] Menges M, Samland A, Planchais S, Murray J. The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell, 2006, 18(4): 893-906.
[29] Randall R, Sornay E, Dewitte W, Murray J. AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. Journal of Experimental Botany, 2015, 66(13): 3991-4000.
[30] Porco S, Larrieu A, Du Y, Gaudinier A, Goh T, Swarup K, Swarup R, Kuempers B, Bishopp A, Lavenus J, Casimiro I, Hill K, Benkova E, Fukaki H, Brady S, Scheres B, Péret B, Bennett M. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 2016, 143(18): 3340-3349.
[31] Garza-Aguilar S, Lara-Núñez A, García-Ramírez E, Vázquez-Ramos J. Modulation of CycD3;1-CDK complexes by phytohormones and sucrose during maize germination. Physiologia Plantarum, 2017, 160(1): 84-97.
[32] Vandenbussche F, Petrásek J, Zádníková P, Hoyerová K, Pesek B, Raz V, Swarup R, Bennett M, Zazímalová E, Benková E, Van Der Straeten D. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development, 2010, 137(4): 597-606.
[33] Peaucelle A, Braybrook S, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Current Biology, 2011, 21(20): 1720-1726. |