[1] STANTZOU A, SCHIRWIS E, SWIST S, ALONSO M S, POLYDOROU I, ZARROUKI F, MOUISEL E, BELEY C, JULIEN A, LE G F, GARCIA L, COLNOT C, BIRCHMEIER C, BRAUN T, SCHUELKE M, RELAIX F, AMTHOR H. BMP signaling regulates satellite cell dependent postnatalmuscle growth. Development, 2017, 114(15): 2737.
[2] KOKABU S, NAKATOMI C, MATSUBARA T, ONO Y, ADSION W N, LOWERY J W, URATA M, HUDNALL A M, HITOMI S, NAKATOMI M, SATO T, OSAWA K, YODA T, ROSEN V, JIMI E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. The Journal of biological chemistry, 2017, 292: jbc.M116.774570.
[3] RUDNICKI M A, LE G F, MCKINNELL I, KUANG S. The molecular regulation of muscle stem cell function. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73:323-331.
[4] ZHANG W W, SUN X F, TONG H L, WANG Y H, LI S F, YAN Y Q, LI G P. Effect of differentiation on microRNA expression in bovine skeletal muscle satellite cells by deep sequencing. Cellular & Molecular Biology Letters, 2016 , 21(1):8.
[5] SUN C, DE M V, MOHAMED A, ORTUSTE QUIROGA H P, ARCIA M A, TREMBLAY A M, VON K A, COLLIE D E, VARGESSON N, MATALLANAS D, WACKERHAGE H, ZAMMIT P S. Common and distinctive functions of the hippo effectors taz and yap in skeletal muscle stem cell function. Stem Cells, 2017, 35(8):1958.
[6] DAI Y, ZHANG W R, WANG Y M, LIU X F, LI X, DING X B, GUO H. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Molecular & Cellular Biochemistry, 2016, 414(1-2):37.
[7] MENDIAS C L. Fibroblasts take the center stage in human skeletal muscle regeneration. The Journal of Physiology, 2017, 595(15):5005.
[8] ZHANG W R, ZHANG H N, WANG Y M, DAI Y, LIU X F, LI X, DING X B, GUO H. MiR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. Vitro Cellular & Developmental Biology Animal, 2017, 53(3): 265.
[9] GOKULAKRISHNAN G, CHANG X, FLEISCHNANN R, FIOROTTO M L. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat. Journal of Endocrinology, 2017, 232(3):561-572.
[10] TIM S, NWDERVEEN J P, MCKAY B R, SOPHIE J, LEX B V, GIANNI P. Satellite cells in human skeletal muscle plasticity. Frontiers in Physiology, 2015, 6: 283.
[11] LI B J, LI P H, HUANG R H, SUN W X, WANG H, LI Q F, CHEN J, WU W J, LIU H L. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australasian Journal of Animal Sciences, 2015, 28(8):1171-1177.
[12] SOUSA V P, García-Prat L, SERRANO A L, PERDIGUERO E, MUNOZ-CANOVES P. Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology & Metabolism, 2015, 26:287-296.
[13] WANG Y M, DING X B, DAI Y, LIU X F, GUO H, ZHANG Y. Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Molecular & Cellular Biochemistry, 2015, 404(1-2):113.
[14] BRAGA M, SIMMONS Z, NORRIS K C, FERRINI M G, ARTAZA J N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocrine Connections, 2017, 6(3):139-150.
[15] PINI V, MORGAN J E, MUNTONI F, O'NEILL H C. Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Current Stem Cell Reports, 2017: 1-12.
[16] PARTRIDGE T A, GROUNDS M, SLOSPER J C. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature, 1978, 273(5660):306-308.
[17] DUMONT N A, BENTZINGER C F, SINCENNES M, RUDNICKI M A. Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 2015, 5(3):1027.
[18] PERSSON P B. Skeletal muscle satellite cells as myogenic progenitors for muscle homeostasis, growth, regeneration and repair. Acta Physiologica, 2015, 213(3):537-538.
[19] SOUSA V P, GARCIA P L, SERRANO A L, PERDIGUERO E, MUNOZ C P. Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology & Metabolism, 2015, 26:287-296.
[20] MONTOYA-FLORES D, MORA O, TAMARIZ E, GONZALEZ- DAVALOS L, GONZALEZ-GALLARDO A, ANTARAMIAN A, SHIMADA A, VARELA-ECHAVARRIA A, ROMANO-MUNOZ J L. Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cellline and in primary cultures of bovine myoblasts. Journal of Animal Physiology and Animal Nutrition, 2012, 96(4):725-738.
[21] 李方华, 侯玲玲, 马月辉, 庞全海, 关伟军. 北京油鸡骨骼肌卫星细胞的分离、培养、鉴定及成肌诱导分化的研究. 中国农业科学, 2010, 43(22):4725-4731.
LI F H, HOU L L, MA Y H, PANG Q H, GUAN W J. Study on isolation, culture, identification and differentiation of skeletal muscle satellite cells in Beijing oil chicken. Chinese Journal of Agricultural Sciences, 2010, 43 (22): 4725-4731. (in Chinese)
[22] SHEFER G, YABLONKAREUVENI Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods in Molecular Biology, 2005, 946(290):281-304.
[23] YAMANOUCHI K, HOSOYAMA T, MURAKAMI Y, NAKANO S, NISHIHARA M. Satellite cell differentiation in goat skeletal muscle single fiber culture. Journal of Reproduction and Development, 2009, 55(3):252-255.
[24] SEALE P, RUDNICKI M A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Developmental Biology, 2000, 218(2):115-124.
[25] 何波, 郑嵘, 熊远著,胡春艳. 新生猪骨骼肌卫星细胞的培养鉴定及生物学特性. 畜牧兽医学报, 2006, 37(6):555-559.
HE B, ZHENG R, XIONG Y Z, HU C Y. Culture and identification of skeletal muscle satellite cells of newborn pigs and their biological characteristics. Journal of Animal Husbandry and Veterinary Medicine, 2006, 37 (6): 555-559. (in Chinese)
[26] MAESNER C C, ALMADA A E, WAGERS A J. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skeletal Muscle, 2016, 6(1):35.
[27] 陈岩, 王琨, 朱大海. 鸡骨骼肌卫星细胞的分离培养、鉴定及生物学特性研究. 遗传, 2006, 28(3):257-260.
CHEN Y, WANG K, ZHU D H. Isolation, culture and identification of chicken skeletal muscle satellite cells and their biological characteristics. Genetic, 2006, 28(3):257-260. (in Chinese)
[28] 李俊涛,赵薇,李丹丹, 冯静,巴贵,宋天增,张红平. miR-101a靶向EZH2促进山羊骨骼肌卫星细胞的分化. 遗传, 2017, 39(9): 828-836.
LI J T, ZHAO W, LI D D, FENG J, BA G, SONG T Z, ZHANG H P. EZH2 targets miR-101a in goat skeletal muscle satellite cells differentiation. Genetic, 2017, 39(9): 828-836. (in Chinese)
[29] 吴海青. mTOR信号通路对山羊骨骼肌卫星细胞增殖及分化的影响[D]. 呼和浩特: 内蒙古大学,2015.
WU H Q. The effects of mammalian target of rapamycin signaling pathway on proliferation and differentiation of goat skeletal muscle satellite cells [D]. Huhhot: Mongolian university, 2015. (in Chinese)
[30] YIN H, PRICE F, RUDNICKI M A. Satellite cells and the muscle stem cell niche. Physiological Reviews, 2013, 93(1):23.
[31] XU X, JI S, LI W, YI B, LI H X, ZHANG H F, MA W P. LncRNA H19 promotes the differentiation of bovine skeletal muscle satellite cells by suppressing Sirt1/FoxO1. Cellular & Molecular Biology Letters, 2017, 22(1):10.
[32] GRIGER J, SCHNEIDER R, LAHMANN I, SCHOWEL V, KELLER C, SPULER S, NAZARE M, BIRCHMEIER C. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. Elife, 2017, 6.
[33] LAUMONIER T, BERMONT F, HOFFEYER P, KINDLER V, MENETREY J. Human myogenic reserve cells are quiescent stem cells that contribute to muscle regeneration after intramuscular transplantation in immunodeficient mice. Scientific Reports, 2017, 14;7(1):3462.
[34] LILJA K C, ZHANG N, MAGLI A, GUNDUZ V, BOWMAN C J, ARPKE R W, DARABI R, KYBA M, PERLINGEIRO R, DYNLACHT B D. Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS One, 2017, 12(4):e0176190.
[35] STAVROULA T, DELLAG P A, RUSSELL A P. Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS. Frontiers in Physiology, 2016, 7: 403.
[36] 刘月光, 史新娥, 沈清武,袁媛,杨秋梅,高晓娟,陈宗正,杨公社. 利用单根肌纤维法分离和培养猪骨骼肌卫星细胞及其成肌诱导分化. 农业生物技术学报, 2011, 19(5):856-863.
LIU Y G, SHI X E, SHEN Q W, YUAN Y, YANG Q M, GAO X J, YANG Z Z,YANG G S. Isolation and culture of porcine skeletal muscle satellite cells and their myogenic differentiation by single muscle fiber method. Journal of Agricultural Biotechnology, 2011, 19(5):856-863. (in Chinese)
[37] WU H, REN Y, LI S, WANG W, YUAN J, GUO X, LIU D, CANG M . In vitro culture and induced differentiation of sheep skeletal muscle satellite cells. Cell Biology International, 2012, 36(6):579-587.
[38] MOTOHASHI N, ASAKURA A. Muscle satellite cell heterogeneity and self-renewal. Frontiers in Cell Developmental Biology, 2014, 2(1):1. |