中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3440-3450.doi: 10.3864/j.issn.0578-1752.2021.16.007

• 植物保护 • 上一篇    下一篇

苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析

王程利(),尹志远,聂嘉俊,林永辉,黄丽丽()   

  1. 西北农林科技大学植物保护学院/旱区作物逆境生物学国家重点实验室,陕西杨凌 712100
  • 收稿日期:2020-11-08 接受日期:2020-12-17 出版日期:2021-08-16 发布日期:2021-08-24
  • 通讯作者: 黄丽丽
  • 作者简介:王程利,E-mail: wein599@163.com
  • 基金资助:
    国家自然科学基金(31871917);国家自然科学基金(U1903206)

Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali

WANG ChengLi(),YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi()   

  1. College of Plant Protection, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2020-11-08 Accepted:2020-12-17 Online:2021-08-16 Published:2021-08-24
  • Contact: LiLi HUANG

摘要:

【目的】CAP(Cysteine-rich secretory protein,Antigen 5 and Pathogenesis related protein 1)超家族蛋白广泛存在于真菌、细菌、动植物等物种,并且参与病原菌的致病过程。本研究旨在鉴定苹果树腐烂病致病菌——苹果黑腐皮壳菌(Valsa mali)的CAP超家族基因并明确CAP超家族基因在病菌致病方面的作用。【方法】通过BLASTP在苹果黑腐皮壳菌全基因组中检索具有CAP保守结构域的基因;利用特异性引物对鉴定到的CAP基因进行PCR扩增和凝胶电泳检测;使用生物信息学软件和在线数据库进行蛋白序列特征和系统发育分析;利用RT-qPCR分析基因在病菌侵染过程中的表达模式;使用特异性引物扩增CAP基因上、下游片段并从PDL2质粒上扩增筛选标记基因;利用Double-joint PCR构建基因敲除盒并通过PEG介导的原生质转化技术进行基因敲除和基因回补;以遗传霉素(G418)抗性为筛选标记并利用4对引物PCR检测获得基因敲除突变体;以潮霉素(HPH)抗性为筛选标记获得基因回补菌株;通过对菌株进行培养皿内生长试验明确基因对病菌营养生长的影响;通过离体苹果枝条接种试验分析该病菌CAP超家族基因的毒性功能。【结果】在苹果黑腐皮壳菌中鉴定到3个具有CAP保守结构域的基因,分别命名为VmPR1aVmPR1bVmPR1c。序列特征分析发现,3个CAP蛋白均包含4个保守区:N端信号肽、N端延伸区(NTE)、CAP保守功能域和C端延伸区(CTE)。系统发育分析显示,3个CAP蛋白聚于不同的进化支,VmPR1a聚于clade2进化支并与粗糙链孢霉(Neurospora crassa)CAP蛋白进化关系较近;VmPR1b聚于clade3且与镰孢菌属(Fusarium spp.)CAP蛋白的进化关系更近;VmPR1c聚于clade1,并且也与粗糙链孢霉的CAP蛋白进化关系较近。RT-qPCR分析结果显示,VmPR1aVmPR1bVmPR1c在病菌侵染早期(6 h和12 h)均显著上调表达。利用PEG遗传转化技术获得VmPR1aVmPR1bVmPR1c敲除突变体(ΔVmPR1a-7/23、ΔVmPR1b-20/31和ΔVmPR1c-26/40);营养生长观察发现,所有敲除突变体生长表型与野生型菌株03-8均无明显差异;致病力检测发现,ΔVmPR1b-20/31致病力较野生型无明显变化,而ΔVmPR1a-7/23和ΔVmPR1c-26/40致病力较野生型显著下降。将VmPR1aVmPR1c分别回补至ΔVmPR1a和ΔVmPR1c,回补菌株(VmPR1a/C和VmPR1c/C)致病力恢复至野生型水平。【结论】苹果黑腐皮壳菌中存在3个CAP超家族基因(VmPR1aVmPR1bVmPR1c),其中VmPR1aVmPR1c是苹果黑腐皮壳菌重要的毒性因子。

关键词: 苹果黑腐皮壳菌, CAP 蛋白, 基因鉴定, 基因敲除, 毒性功能

Abstract:

【Objective】CAP (Cysteine-rich secretory protein, Antigen 5 and Pathogenesis related protein 1) superfamily proteins widely exist in fungi, bacteria, animal and plant. This kind of proteins participates in the pathogenic process of the pathogen. The purpose of this study was to identify the CAP superfamily genes in Valsa mali and clarify their virulence roles.【Method】BLASTP was used to retrieve genes with the conserved CAP domains in the whole genome of V. mali. PCR amplification and gel electrophoresis detection were carried out with specific primers. Bioinformatics software and online databases were used for protein sequence characterization and phylogenetic analysis. RT-qPCR was used to analyze the gene expression profiles. Double-joint PCR was used to construct gene knocking-out cassettes, PEG-mediated protoplast transformation was used to obtain knocking-out mutants and complementation strains. To obtain gene knockout mutants, geneticin (G418) was used as a selection marker, and transformants were validated by four pairs of primers. To obtain gene complementation transformants, hygromycin (HPH) was used as a selection marker. The vegetative growth of these strains was determined by cultivation on PDA medium, and the virulence of these strains was verified by inoculation on apple twigs.【Result】Three CAP superfamily genes were identified in V. mali, named VmPR1a, VmPR1b and VmPR1c, respectively. The three CAP proteins all contain four conserved regions, including a N-terminal signal peptide, a N-terminal extension region (NTE), a CAP domain and a C-terminal extension region (CTE). Phylogenetic analysis showed that the three proteins belonged to different clades. VmPR1a was clustered in clade2 and closely related to Neurospora crassa CAP protein. VmPR1b was clustered in clade3 and closely related to CAP proteins of Fusarium spp.. VmPR1c was clustered in clade1 and also closely related to N. crassa CAP protein. RT-qPCR analysis showed that VmPR1a, VmPR1b and VmPR1c were significantly up-regulated during early stages of infection (6 h and 12 h). VmPR1a, VmPR1b and VmPR1c knockout mutants (ΔVmPR1a-7/23, ΔVmPR1b-20/31 and ΔVmPR1c-26/40, respectively) were obtained, and all mutants showed no apparent alteration in filamentous growth compared with that of the wild-type strain. The virulence of ΔVmPR1b-20/31 was not obviously influenced. However, the virulence of ΔVmPR1a-7/23 and ΔVmPR1c-26/40 was significantly reduced compared with that of the wild-type strain. Moreover, the virulence of gene complementation strains (VmPR1a/C and VmPR1c/C) was restored to comparable level as that of the wild-type. 【Conclusion】Three CAP super-family genes were identified in V. mali (VmPR1a, VmPR1b and VmPR1c), and VmPR1a and VmPR1c are virulence factors of V. mali.

Key words: Valsa mali, CAP protein, gene identification, gene knockout, virulence