[1] |
GIBBS G M, ROELANTS K, O’BRYAN M K. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense. Endocrine Reviews, 2008, 29(7):865-897.
doi: 10.1210/er.2008-0032
|
[2] |
OLRICHS N K, HELMS J B. Novel insights into the function of the conserved domain of the CAP superfamily of proteins. AIMS Biophysics, 2016, 3(2):232-246.
doi: 10.3934/biophy.2016.2.232
|
[3] |
YAMAZAKI Y, MORITA T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon, 2004, 44(3):227-231.
doi: 10.1016/j.toxicon.2004.05.023
|
[4] |
KELLEHER A, DARWICHE R, REZENDE W C, FARIAS L P, LEITE L C C, SCHNEITER R, ASOJO O A. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs. Acta Crystallographica, 2014, 71(8):2186-2196.
|
[5] |
MILNE T J, ABBENANTE G, TYNDALL J D A, HALLIDAY J, LEWIS R J. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. Journal of Biological Chemistry, 2003, 278(33):31105-31110.
doi: 10.1074/jbc.M304843200
|
[6] |
KING T P, MORAN D, WANG D F, KOCHOUMIAN L, CHAIT B T. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Protein Sequences and Data Analysis, 1990, 3(3):263-266.
|
[7] |
VAN LOON L C, VAN KAMMEN A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus Virology, 1970, 40:190-211.
|
[8] |
CHEN Y L, LEE C Y, CHENG K T, CHANG W H, HUANG R N, NAM H G, CHEN Y R. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. The Plant Cell, 2014, 26:4135-4148.
doi: 10.1105/tpc.114.131185
|
[9] |
ROHM M, LINDEMANN E, HILLER E, ERMERT D, LEMUTH K, TRKULJA D, SOGUKPINAR O, BRUNNER H, RUPP S, URBAN C F, SOHN K. A family of secreted pathogenesis-related proteins in Candida albicans. Molecular Microbiology, 2013, 87(1):132-151.
doi: 10.1111/mmi.2013.87.issue-1
|
[10] |
PRADOS-ROSALES R C, ROLDAN-RODRIGUEZ R, SERENA C, LOPEZ-BERGES M S, GUARRO J, MARTÍNEZ-DEL-POZO Á, DI PIETRO A. A pr-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. Journal of Biological Chemistry, 2012, 287(26):21970-21979.
doi: 10.1074/jbc.M112.364034
|
[11] |
TEIXEIRA P J P, THOMAZELLA D P T, VIDAL R O, DO PRADO P F V, REIS O, BARONI R M, FRANCO S F, MIECZKOWSKI P, PEREIRA G A G, MONDEGO J M C. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS ONE, 2012, 7(9):e45929.
doi: 10.1371/journal.pone.0045929
|
[12] |
LU S, EDWARDS M C. Molecular characterization and functional analysis of PR-1-like proteins identified from the wheat head blight fungus Fusarium graminearum. Phytopathology, 2018, 108(4):510-520.
doi: 10.1094/PHYTO-08-17-0268-R
|
[13] |
YIN Z Y, LIU H Q, LI Z P, KE X W, DOU D L, GAO X N, SONG N, DAI Q Q, WU Y X, XU J R, KANG Z S, HUANG L L. Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytologist, 2015, 208(4):1202-1216.
doi: 10.1111/nph.2015.208.issue-4
|
[14] |
王旭丽. 中国苹果树腐烂病菌的种类: rDNA-ITS序列和表型比较研究[D]. 杨凌: 西北农林科技大学, 2007.
|
|
WANG X L. Pathogen of apple tree valsa canker in China: A combined analysis of phenotypic characteristics and rDNA-ITS sequences[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
|
[15] |
KE X, HUANG L L, HAN Q M, GAO X N, KANG Z S. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. mali. Australasian Plant Pathology, 2013, 42(1):85-93.
doi: 10.1007/s13313-012-0158-y
|
[16] |
杜战涛, 李正鹏, 高小宁, 黄丽丽, 韩青梅. 陕西省苹果树腐烂病周年消长及分生孢子传播规律研究. 果树学报, 2013, 30(5):819-822.
|
|
DU Z T, LI Z P, GAO X N, HUANG L L, HAN Q M. Study on the conidia dispersal and the disease dynamics of apple tree canker caused by Valsa mali var. mali in Shaanxi. Journal of Fruit Science, 2013, 30(5):819-822. (in Chinese)
|
[17] |
林晓, 孙传茹, 王彩霞, 练森, 董向丽, 李保华. 影响苹果树腐烂病菌侵染致病的流行因子. 中国农业科学, 2021, 54(11):2333-2342.
|
|
LIN X, SUN C R, WANG C X, LIAN S, DONG X L, LI B H. Epidemic factors affecting the infection and occurrence of Valsa mali. Scientia Agricultura Sinica, 2021, 54(11):2333-2342. (in Chinese)
|
[18] |
BESSHO H, TSUCHIYA S, SOEJIMA J. Screening methods of apple trees for resistance to Valsa canker. Euphytica, 1994, 77(1/2):15-18.
doi: 10.1007/BF02551454
|
[19] |
ABE K, KOTODA N, KATO H, SOEJIMA J. Genetic studies on resistance to Valsa canker in apple: Genetic variance and breeding values estimated from intra- and inter-specific hybrid progeny populations. Tree Genetics and Genomes, 2011, 7(2):363-372.
doi: 10.1007/s11295-010-0337-3
|
[20] |
刘欣颖, 吕松, 王忆, 王昆, 李天红, 韩振海, 张新忠. 苹果种质资源对苹果树腐烂病抗性评价. 果树学报, 2011, 28(5):843-848.
|
|
LIU X Y, LÜ S, WANG Y, WANG K, LI T H, HAN Z H, ZHANG X H. Evaluation of resistance of Malus germplasms to apple canker (Valsa ceratosperma). Journal of Fruit Science, 2011, 28(5):843-848. (in Chinese)
|
[21] |
YIN Z Y, KE X W, HUANG D X, GAO X N, VOEGELE R T, KANG Z S, HUANG L L. Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World Journal of Microbiology and Biotechnology, 2013, 29(9):1563-1571.
doi: 10.1007/s11274-013-1320-6
|
[22] |
YU J, HAMARI Z, HAN K, SEO J, REYES-DOMÍNGUEZ Y, SCAZZOCCHIO C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 43:973-981.
|
[23] |
高静, 李艳波, 柯希望, 康振生, 黄丽丽. PEG介导的苹果腐烂病菌原生质体转化. 微生物学报, 2011, 51(9):1194-1199.
|
|
GAO J, LI Y B, KE X W, KANG Z S, HUANG L L. Development of genetic transformation system of Valsa mali of apple mediated by PEG. Acta Microbiologica Sinica, 2011, 51(9):1194-1199. (in Chinese)
|
[24] |
臧睿, 黄丽丽, 康振生, 王旭丽. 陕西苹果树腐烂病菌(Cytospora spp.)不同分离株的生物学特性与致病性研究. 植物病理学报, 2007, 37(4):343-351.
|
|
ZANG R, HUANG L L, KANG Z S, WANG X L. Biological characteristics and pathogenicity of different isolates of Cytospora spp. isolated from apple trees in Shaanxi Province. Acta Phytopathologica Sinica, 2007, 37(4):343-351. (in Chinese)
|
[25] |
许春景. 苹果树腐烂病菌三个果胶酶基因的致病功能研究[D]. 杨凌: 西北农林科技大学, 2016.
|
|
XU C J. Pathogenic function of three pectinase genes in Valsa mali[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
|
[26] |
WU Y X, XU L S, YIN Z Y, DAI Q Q, GAO X N, FENG H, VOEGELE R T, HUANG L L. Two members of the velvet family, VmVeA and VmVelB, affect conidiation, virulence and pectinase expression in Valsa mali. Molecular Plant Pathology, 2018, 19(7):1639-1651.
doi: 10.1111/mpp.2018.19.issue-7
|
[27] |
FENG H, XU M, ZHENG X, ZHU T Y, GAO X N, HUANG L L. MicroRNAs and their targets in apple (Malus domestica cv. “Fuji”) involved in response to infection of pathogen Valsa mali. Frontiers in Plant Science, 2017, 8:2081.
doi: 10.3389/fpls.2017.02081
|
[28] |
XU M, GUO Y, TIAN R Z, GAO C, GUO F R, VOEGELE R T, BAO J Y, LI C J, JIA C H, FENG H, HUANG L L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. New Phytologist, 2020, 227:899-913.
doi: 10.1111/nph.v227.3
|
[29] |
JONES J D, DANGL J L. The plant immune system. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286
|
[30] |
VLEESHOUWERS V G, OLIVER R P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular Plant-Microbe Interactions, 2014, 27(3):196-206.
doi: 10.1094/MPMI-10-13-0313-IA
|
[31] |
LI Z, YIN Z Y, FAN Y, XU M, KANG Z S, HUANG L L. Candidate effector proteins of the necrotrophic apple canker pathogen Valsa mali can suppress BAX-induced PCD. Frontiers in Plant Science, 2015, 6:579.
|
[32] |
ZHANG M, FENG H, ZHAO Y H, SONG L L, GAO C, XU X M, HUANG L L. Valsa mali pathogenic effector VmPxE1 contributes to full virulence and interacts with the host peroxidase MdAPX1 as a potential target. Frontiers in Microbiology, 2018, 9:821.
doi: 10.3389/fmicb.2018.00821
|
[33] |
ZHANG M, XIE S C, ZHAO Y H, MENG X, SONG L L, FENG H, HUANG L L. Hce2 domain-containing effectors contribute to the full virulence of Valsa mali in a redundant manner. Molecular Plant Pathology, 2019, 20(6):843-856.
doi: 10.1111/mpp.2019.20.issue-6
|