中国农业科学 ›› 2021, Vol. 54 ›› Issue (24): 5290-5301.doi: 10.3864/j.issn.0578-1752.2021.24.011
胡荣蓉(),丁世杰(
),郭赟,朱浩哲,陈益春,刘政,丁希,唐长波(
),周光宏(
)
收稿日期:
2021-05-20
接受日期:
2021-07-31
出版日期:
2021-12-16
发布日期:
2021-12-28
通讯作者:
唐长波,周光宏
作者简介:
胡荣蓉,E-mail: 基金资助:
HU RongRong(),DING ShiJie(
),GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo(
),ZHOU GuangHong(
)
Received:
2021-05-20
Accepted:
2021-07-31
Online:
2021-12-16
Published:
2021-12-28
Contact:
ChangBo TANG,GuangHong ZHOU
摘要:
【目的】探究抗氧化剂-水溶性维生素E的类似物(Trolox)通过调控活性氧对猪肌肉干细胞增殖及分化过程产生的影响,为进一步优化培养肉种子细胞在体外增殖及分化过程提供研究基础。【方法】首先在猪肌肉干细胞增殖过程中,添加不同浓度(0、50、100和200 μmol∙L-1)的Trolox培养3 d,利用血细胞计数板进行细胞计数,统计细胞增殖倍数,同时利用CCK8技术检测不同浓度的Trolox对细胞增殖的影响;利用RT-qPCR技术检测不同浓度Trolox处理后表征干性的PAX7表达水平,Western Blotting技术检测PAX7蛋白的表达水平;通过CellROX荧光染料对细胞内活性氧进行染色并通过高通量高内涵活细胞共聚焦成像系统检测Trolox对活性氧的调控作用;进一步在猪肌肉干细胞体外成肌分化进程中添加Trolox处理,利用RT-qPCR技术检测分化早期标志基因MYOG、CAV-3及终末分化标志基因肌球蛋白重链(MyHC)的表达水平,并利用Western Blotting技术检测MyHC蛋白的表达,利用免疫荧光技术对MyHC进行染色并统计MyHC阳性细胞比例。【结果】细胞增殖倍数统计显示,50和100 μmol∙L-1的Trolox处理组猪肌肉干细胞增殖倍数显著高于对照组(P<0.05);CCK8测得50和100 μmol∙L-1 Trolox处理组第3天的吸光值显著高于对照组(P<0.05);100和200 μmol∙L-1的Trolox显著上调了PAX7的表达(P<0.05),对PAX7蛋白的表达有上调趋势,但无显著差异(P>0.05);添加Trolox后,细胞内活性氧水平被极显著降低(P<0.001);在分化进程中添加Trolox后,预分化阶段的MYOG和CAV-3及终末分化阶段的MyHC均显著上调(P<0.05),而Western blotting结果显示MyHC蛋白的表达无显著变化(P>0.05);免疫荧光结果显示MyHC阳性细胞比例有增多的趋势,但无显著差异(P>0.05)。【结论】Trolox通过降低细胞内的活性氧,促进猪肌肉干细胞的增殖以及分化进程。
胡荣蓉,丁世杰,郭赟,朱浩哲,陈益春,刘政,丁希,唐长波,周光宏. Trolox对猪肌肉干细胞增殖及分化的影响[J]. 中国农业科学, 2021, 54(24): 5290-5301.
HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells[J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
表1
RT-qPCR引物信息"
基因 Gene | 引物序列 Primer Sequence | 产物长度 Product length (bp) | |
---|---|---|---|
PAX7 | 上游 Forward | GTGCCCTCAGTGAGTTCGATT | 152 |
下游 Reverse | TCCAGACGGTTCCCTTTGTC | ||
MYOG | 上游 Forward | AGGCTACGAGCGGACTGA | 230 |
下游 Reverse | GCAGGGTGCTCCTCTTCA | ||
CAV-3 | 上游 Forward | GCCCAGATCGTCAAGGACAT | 195 |
下游 Reverse | CAGGCGGTAGCACCAATACT | ||
MyHC | 上游 Forward | AGGACCAAGTACGAGACGGA | 105 |
下游 Reverse | AGCTTCCACGTGTTCCTCAG |
图5
Trolox对猪肌肉干细胞分化的影响 A—C:猪肌肉干细胞体外成肌分化的进程;A:增殖2 d的猪肌肉干细胞;B:增殖4 d处于预分化阶段的猪肌肉干细胞;C:更换分化培养基后分化5 d的猪肌肉干细胞(50×)。D—E:预分化阶段MYOG和CAV-3的mRNA相对表达量;F:MyHC的mRNA相对表达量;G:MyHC蛋白相对表达量;H—K:分别为处理组p-d-、p-d+、p+d+、p+d-的MyHC免疫荧光染色图。p:细胞增殖过程;d:细胞诱导分化过程;+:添加100 μmol∙L-1 Trolox处理;-:未添加Trolox处理。1:DAPI染核;2:目的蛋白荧光;3:1和2重合。L:不同处理组MyHC阳性细胞统计结果"
[1] | ZHANG G Q, ZHAO X R, LI X L, DU G C, ZHOU J W, CHEN J. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 2020, 97:443-450. |
[2] | 周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战. 中国食品学报, 2020, 20(5):1-11. |
ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5):1-11. (in Chinese) | |
[3] | 周景文, 张国强, 赵鑫锐, 李雪良, 堵国成, 陈坚. 未来食品的发展: 植物蛋白肉与细胞培养肉. 食品与生物技术学报, 2020, 39(10):1-8. |
ZHOU J W, ZHANG G Q, ZHAO X R, LI X L, DU G C, CHEN J. Future of food: plant-based and cell-cultured meat. Journal of Food Science and Biotechnology, 2020, 39(10):1-8. (in Chinese) | |
[4] |
BACH A D, STEM-STRAETER J, BEIER J P, BANNASCH H, STARK G B. Engineering of muscle tissue. Clinics in Plastic Surgery, 2003, 30(4):589-599.
doi: 10.1016/S0094-1298(03)00077-4 |
[5] |
FORCINA L, MIANO C, PELOSI L, MUSARÒ A. An overview about the biology of skeletal muscle satellite cells. Current Genomics, 2019, 20(1):24-37.
doi: 10.2174/1389202920666190116094736 |
[6] |
DING S J, WANG F, LIU Y, LI S, ZHOU G H, HU P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 2017, 3:17003.
doi: 10.1038/cddiscovery.2017.3 |
[7] |
FU X, XIAO J, WEI Y N, LI S, LIU Y, YIN J, SUN K, SUN H, WANG H T, ZHANG Z K, ZHANG B T, SHENG C, WANG H Y, HU P. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Research, 2015, 25(6):655-673.
doi: 10.1038/cr.2015.58 |
[8] |
DING S J, SWENNEN G N M, MESSMER T, GAGLIARDI M, MOLIN D G M, LI C B, ZHOU G H, POST M J. Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports, 2018, 8(1):10808.
doi: 10.1038/s41598-018-28746-7 |
[9] | 龚觉晓. 体外培养环境对骨髓间充质干细胞分化成心肌样细胞的影响[D]. 南京: 南京医科大学, 2004. |
GONG J X. An experimental study on inducing bone marrow mesenchymal stem cells to differentiate into cardiomyogenic cells in the culture microenvironment in vitro[D]. Nanjing: Nanjing Medical University, 2004. (in Chinese) | |
[10] |
KOZAKOWSKA M, PIETRASZEK-GREMPLEWICZ K, JOZKOWICZ A, DULAK J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility, 2015, 36(6):377-393.
doi: 10.1007/s10974-015-9438-9 |
[11] |
RAY P D, HUANG B W, TSUJI Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 2012, 24(5):981-990.
doi: 10.1016/j.cellsig.2012.01.008 |
[12] | 陈培, 张钦宪. PTEN-PI3K/AKT细胞信号转导通路与肿瘤. 癌变·畸变·突变, 2010, 22(6):484-487. |
CHEN P, ZHANG Q X. PTEN-PI3K/AKT cell signal transduction pathway and tumor. Carcinogenesis, Teratogenesis & Mutagenesis, 2010, 22(6):484-487. (in Chinese) | |
[13] | 王雪鹏, 李茂强, 边振宇, 季成, 何齐芳, 姚旺祥, 朱六龙. PI3K/Akt信号通路在骨髓间充质干细胞增殖及成骨分化调控中的作用. 中华骨质疏松和骨矿盐疾病杂志, 2014, 7(3):250-257. |
WANG X P, LI M Q, BIAN Z Y, JI C, HE Q F, YAO W X, ZHU L L. Roles of P13K/Akt signaling pathway in regulating bone mesenchymal stem cells proliferation and differentiation. Chinese Journal of Osteoporosis and Bone Mineral Research, 2014, 7(3):250-257. (in Chinese) | |
[14] | BARBIERI E, SESTILL P. Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction, 2012, 2012:982794. |
[15] |
ADHIHETTY P J, IRRCHER I, JOSEPH A M, LJUBICIC V, HOOD D A. Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 2003, 88(1):99-107.
doi: 10.1113/eph8802505 |
[16] | 刘奥, 祁星, 张颖超, 徐天雪, 易静, 杨洁. 细胞内氧化还原状态荧光探针的原理与应用. 上海交通大学学报(医学版), 2018, 38(1):101-107. |
LIU A, QI X, ZHANG Y C, XU T X, YI J, YANG J. Principle and applications of fluorescent probes for intracellular redox detection. Journal of Shanghai Jiao Tong University (Medical Science), 2018, 38(1):101-107. (in Chinese) | |
[17] | PANIERI E, SANTORO M M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death & Disease, 2016, 7(6):e2253. |
[18] | TAN D Q, SUDA T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxidants & Redox Signaling, 2018, 29(2):149-168. |
[19] |
RYALL J G, DELL'ORSO S, DERFOUL A, JUAN A, ZARE H, FENG X S, CLERMONT D, KOULNIS M, GUTIERREZ-CRUZ G, FULCO M, SARTORELLI V. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell, 2015, 16(2):171-183.
doi: 10.1016/j.stem.2014.12.004 |
[20] |
GU Y J, LI T, DING Y L, SUN L X, TU T, ZHU W, HU J B, SUN X C. Changes in mesenchymal stem cells following long-term culture in vitro. Molecular Medicine Reports, 2016, 13(6):5207-5215.
doi: 10.3892/mmr.2016.5169 |
[21] |
L'HONORE A, COMMERE P H, NEGRONI E, PALLAFACCHINA G, FRIGUET B, DROUIN J, BUCKINGHAM M, MONTARRAS D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife, 2018, 7:e32991.
doi: 10.7554/eLife.32991 |
[22] |
MALINSKA D, KUDIN A P, BEJTKA M, KUNZ W S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion, 2012, 12(1):144-148.
doi: 10.1016/j.mito.2011.06.015 |
[23] | HORN A P, BERNARDI A, FROZZA R L, GRUDZINSKI P B, HOPPE J B, SOUZA L F, CHAGASTELLES P, WYSE A T, BERNARD E A, BATTASTINI A M O, CAMPOS M M, LENZ G, NARDI N B, SALBEGO C. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells & Development, 2011, 20(7):1171-1181. |
[24] |
FROTA JUNIOR M L C D, PIRES A S, ZEIDÁN-CHULIÁ F, BRISTOT I J, LOPES F M, DE BITTENCOURT PASQUALI M A, ZANOTTO-FILHO A, BEHR G A, KLAMT F, GELAIN D P, MOREIRA J C F. In vitro optimization of retinoic acid-induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Molecular and Cellular Biochemistry, 2011, 358(1):325-334.
doi: 10.1007/s11010-011-0983-2 |
[25] |
XIA Z G, DICKENS M, RAINGEAUD J, DAVIS R J, GREENBERG M E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270(5240):1326-1331.
doi: 10.1126/science.270.5240.1326 |
[26] |
GARCÍA-PRAT L, MARTÍNEZ-VICENTE M, PERDIGUERO E, ORTET L, RODRÍGUEZ-UBREVA J, REBOLLO E, RUIZ-BONILLA V, GUTARRA S, BALLESTAR E, SERRANO A L, SANDRI M, MUÑOZ-CÁNOVES P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584):37-42.
doi: 10.1038/nature16187 |
[27] | LE MOAL E, PIALOUX V, JUBAN G T, GROUSSARD C, ZOUHAL H, CHAZAUD B, MOUNIER R. Redox control of skeletal muscle regeneration. Antioxidants & Redox Signaling, 2017, 27(5):276-310. |
[28] |
ROCHETEAU P, GAYRAUD-MOREL B, SIEGL-CACHEDENIER I, BLASCO M A, TAJBAKHSH S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell, 2012, 148(1/2):112-125.
doi: 10.1016/j.cell.2011.11.049 |
[29] |
OLGUIN H C, OLWIN B B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Developmental Biology, 2004, 275(2):375-388.
doi: 10.1016/j.ydbio.2004.08.015 |
[30] | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, RUDNICKI M A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell & Developmental Biology, 2017, 72:10-18. |
[31] |
QUACH N L, BIRESSI S, REICHARDT L F, KELLER C, RANDO T A. Focal adhesion kinase signaling regulates the expression of caveolin 3 and β1 integrin, genes essential for normal myoblast fusion. Molecular Biology of the Cell, 2009, 20(14):3422-3435.
doi: 10.1091/mbc.e09-02-0175 |
[32] |
BAI T, LI J Q, SINCLAIR A, IMREN S, MERRIAM F, SUN F, O'KELLY M B, NOURIGAT C, JAIN P, DELROW J J, BASOM R S, HUNG H C, ZHANG P, LI B W, HEIMFELD S, JIANG S Y, DELANEY C. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nature Medicine, 2019, 25(10):1566-1575.
doi: 10.1038/s41591-019-0601-5 |
[33] | 唐朝春. 抗氧化物对人脐血CD34~+细胞体外扩增的影响[D]. 上海: 华东理工大学, 2018. |
TANG C C. The effect of antioxidant on the Ex vivo expansion of cord blood CD34+ cells[D]. Shanghai: East China University of Science and Technology, 2018. (in Chinese) | |
[34] |
VON MALTZAHN J, JONES A E, PARKS R J, RUDNICKI M A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. PNAS, 2013, 110(41):16474-16479.
doi: 10.1073/pnas.1307680110 |
[35] |
KEREN A, TAMIR Y, BENGAL E. The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Molecular and Cellular Endocrinology, 2006, 252(1/2):224-230.
doi: 10.1016/j.mce.2006.03.017 |
[36] |
SEGALÉS J, PERDIGUERO E, MUÑOZ-CÁNOVES P. Epigenetic control of adult skeletal muscle stem cell functions. The FEBS Journal, 2015, 282(9):1571-1588.
doi: 10.1111/febs.2015.282.issue-9 |
[37] |
PERDIGUERO E, RUIZ-BONILLA V, SERRANO A L, MUÑOZ-CÁNOVES P. Genetic deficiency of p38α reveals its critical role in myoblast cell cycle exit: the p38α-JNK connection. Cell Cycle, 2007, 6(11):1298-1303.
doi: 10.4161/cc.6.11.4315 |
[38] |
PALACIOS D, MOZZETTA C, CONSALVI S, CARETTI G, SACCONE V, PROSERPIO V, MARQUEZ V E, VALENTE S, MAI A, FORCALES S V, SARTORELLI V, PURI P L. TNF/p38α/ polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell, 2010, 7(4):455-469.
doi: 10.1016/j.stem.2010.08.013 |
[39] | MOZZETTA C, CONSALVI S, SACCONE V, FORCALES S V, PURI P L, PALACIOS D. Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation. Cell Cycle, 2011, 10(2):191-198. |
[40] | 甘强, 金礼吉, 安利佳. 耦联性转录与翻译新进展: 真核生物细胞核内的翻译. 遗传, 2003, 25(6):718-720. |
GAN Q, JIN L J, AN L J. The new advance of coupled transcription and translation: translation within the nuclei in eukaryotes. Hereditas(Beijing), 2003, 25(6):718-720. (in Chinese) | |
[41] |
STEPHAN J R, YU F T, COSTELLO R M, BLEIER B S, NOLAN E M. Oxidative post-translational modifications accelerate proteolytic degradation of calprotectin. Journal of the American Chemical Society, 2018, 140(50):17444-17455.
doi: 10.1021/jacs.8b06354 |
[42] |
ARDITE E, BARBERA J A, ROCA J, FERNÁNDEZ-CHECA J C. Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-kappaB activation. The American Journal of Pathology, 2004, 165(3):719-728.
doi: 10.1016/S0002-9440(10)63335-4 |
[43] |
GUTTRIDGE D C, MAYO M W, MADRID L V, WANG C Y, BALDWIN A S. NF-κB-Induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000, 289(5488):2363-2366.
doi: 10.1126/science.289.5488.2363 |
[44] | GUTTRIDGE D C, ALBANESE C, REUTHER J Y, PESTELL R G, BALDWIN A S. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Molecular & Cellular Biology, 1999, 19(8):5785-5799. |
[45] |
L′HONORE A, COMMÈRE P H, OUIMETTE J F, MONTARRAS D, DROUIN J, BUCKINGHAM M. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Developmental Cell, 2014, 29(4):392-405.
doi: 10.1016/j.devcel.2014.04.006 |
[1] | 杨昕冉,马鑫浩,杜嘉伟,昝林森. m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J]. 中国农业科学, 2023, 56(1): 165-178. |
[2] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[3] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[4] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[5] | 陈彧,朱浩哲,陈益春,刘政,丁希,郭赟,丁世杰,周光宏. 猪肌肉干细胞在三维水凝胶中的分化研究[J]. 中国农业科学, 2022, 55(22): 4500-4512. |
[6] | 黄勋和,翁茁先,李威娜,王庆,何丹林,罗威,张细权,杜炳旺. 中国地方品种黄鸡线粒体DNA D-loop遗传多样性研究[J]. 中国农业科学, 2022, 55(22): 4526-4538. |
[7] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[8] | 万连杰,何满,李俊杰,田洋,张绩,郑永强,吕强,谢让金,马岩岩,邓烈,易时来. 有机肥替代部分化肥对椪柑生长、品质及土壤特性的影响[J]. 中国农业科学, 2022, 55(15): 2988-3001. |
[9] | 聂兴华, 郑瑞杰, 赵永廉, 曹庆芹, 秦岭, 邢宇. 利用荧光SSR分子标记评估中国栗属植物遗传多样性[J]. 中国农业科学, 2021, 54(8): 1739-1750. |
[10] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[11] | 冯云奎,王健,马金亮,张柳明,李拥军. miR-31-5p对山羊毛囊干细胞增殖和凋亡的影响[J]. 中国农业科学, 2021, 54(23): 5132-5143. |
[12] | 杜嘉伟,杜鑫泽,杨昕冉,宋贵兵,赵慧,昝林森,王洪宝. 干扰TP53INP2抑制牛成肌细胞分化[J]. 中国农业科学, 2021, 54(21): 4685-4693. |
[13] | 陈媛,蔡禾,李利,王林杰,仲涛,张红平. 山羊TNNT3基因可变剪切及其对骨骼肌细胞分化的作用[J]. 中国农业科学, 2021, 54(20): 4466-4477. |
[14] | 杜青,陈平,刘姗姗,罗凯,郑本川,杨欢,何舜,杨文钰,雍太文. 玉米-大豆间套作下田间小气候对大豆花形态建成进程的影响[J]. 中国农业科学, 2021, 54(13): 2746-2758. |
[15] | 李宇,汪芳,翁泽斌,宋海昭,沈新春. 酶法制备大豆蛋白成骨活性肽[J]. 中国农业科学, 2021, 54(13): 2885-2894. |
|