中国农业科学 ›› 2017, Vol. 50 ›› Issue (6): 990-1015.doi: 10.3864/j.issn.0578-1752.2017.06.003
徐建飞,金黎平
收稿日期:
2016-08-10
出版日期:
2017-03-16
发布日期:
2017-03-16
通讯作者:
金黎平,E-mail:jinliping@caas.cn
作者简介:
徐建飞,E-mail:xujianfei@caas.cn
基金资助:
XU JianFei, JIN LiPing
Received:
2016-08-10
Online:
2017-03-16
Published:
2017-03-16
摘要: 马铃薯是世界第三大粮食作物,马铃薯产业的可持续发展对保障世界和中国的粮食安全具有重要意义。优良品种是支撑马铃薯产业发展的基础。马铃薯经常遭受病虫害的侵袭和非生物胁迫,加工业的迅速发展和人们对食物营养的重视,迫切需要选育出更抗病、更耐逆、更高产、更优质和专用的马铃薯新品种。培育一个优良马铃薯品种,种质资源是基础,重要性状的遗传学是理论指导,先进的育种技术是保障,完善的推广和栽培模式是支撑。世界范围内,保存了大约65 000份马铃薯种质资源,通过对种质资源抗病、抗逆和品质方面的系统评价,并应用多种资源利用技术,将三大类约17个野生种的种质导入到普通栽培种中,应用于育种和遗传学研究。利用纯合双单倍体材料作为测序对象,马铃薯基因组序列已经被揭示,预测出了39 031个蛋白编码基因,目前更多的种质资源正在被重测序以揭示更多的等位变异。马铃薯普通栽培品种是无性繁殖四倍体作物,具有四体遗传特性,尽管如此,许多植株发育和形态、块茎品质和抗病抗逆等重要性状的遗传特性基本明确,并定位和克隆了大量重要性状相关基因。目前,马铃薯育种技术主要涵盖传统育种技术、倍性育种技术、标记辅助选择育种技术、基因工程育种技术和新兴的基因组选择育种技术。中国马铃薯遗传育种研究队伍不断壮大,品种选育取得了重大进展。荷兰马铃薯遗传育种水平居于世界前列,合作育种模式推动了商业化育种。不断完善马铃薯综合育种技术,创新育种模式和机制,充分利用现有种质资源培育突破性、专用型品种将是未来马铃薯遗传育种发展的主要方向。
徐建飞,金黎平. 马铃薯遗传育种研究:现状与展望[J]. 中国农业科学, 2017, 50(6): 990-1015.
XU JianFei, JIN LiPing. Advances and Perspectives in Research of Potato Genetics and Breeding[J]. Scientia Agricultura Sinica, 2017, 50(6): 990-1015.
[1] Mullins E, Milbourne D, Petti C, Doyle-Prestwich B M, Meade C. Potato in the age of biotechnology. Trends in Plant Science, 2006, 11(5): 254-260.
[2] 屈冬玉, 谢开云, 金黎平, 庞万福, 卞春松, 段绍光. 中国马铃薯产业发展与食物安全. 中国农业科学, 2005, 38(2): 358-362.
Qu D Y, Xie K Y, Jin L P, Pang W F, Bian C S, Duang S G. Development of potato industry and food security in China. Scientia Agricultura Sinica, 2005, 38(2): 358-362. (in Chinese)
[3] 金黎平, 屈冬玉, 谢开云, 卞春松, 段绍光. 我国马铃薯种质资源和育种技术研究进展. 种子, 2003, 5: 98-100.
Jin L P, Qu D Y, Xie K Y, Bian C S, Duan S G. Advances of potato germplasm and breeding technology in China. Seed, 2003, 5: 98-100. (in Chinese)
[4] Hawkes J G, Francisco-Ortega J. The early history of the potato in Europe. Euphytica, 1993, 70(1): 1-7.
[5] Johns T, Alonso J G. Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica, 1990, 50(3): 203-210.
[6] Ghislain M N, úñez J, Herrera M R, Spooner D M. The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics, 2009, 118(5): 963-969.
[7] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review, 2014, 80(4): 283-383.
[8] Hawkes J G. The potato: Evolution, biodiversity, and genetic resources.Washington D. C.: Smithsonian Institution Press, 1990.
[9] Panta A, Panis B, Ynouye C, Swennew R, Roca W M. Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters, 2014, 35(3): 255-266.
[10] Roca W M, Espinoza N O, Roca M R, Bryan J E. A tissue culture method for the rapid propagation of potatoes. American Potato Journal, 1978, 55(12): 691-701.
[11] Gonzalez-Arnao M T, Panta A, Roca W M, Escobar R H, Engelmann F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture, 2007, 92(1): 1-13.
[12] Kaczmarczyk A, Rokka V M, Keller E R J. Potato shoot tip cryopreservation, a review. Potato Research, 2010, 54(1): 45-79.
[13] van den Berg R G, Miller J T, Ugarte M L, Kardolus J P, Villand J, Spooner D. Collapse of morphological species in the wild potato Solanum brevicaule complex (Solanaceae: sect. Petota). American Journal of Botany, 1998, 85(1): 92-109.
[14] Cooke R J. New approaches to potato variety identification. Potato Research, 1999, 42(3): 529-539.
[15] Salaman R N. The early European potato: its character and place of origin. Journal of the Linnean Society(Botany), 1946, 53: 1-27.
[16] Castañeda-Álvarez N P, de Haan S, Juárez H, Khoury C K, Achicanoy H A, Sosa C C, Bernau V, Salas A, Heider B, Simon R, Maxted N, Spooner D M. Ex situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). PLoS ONE, 2015, 10: e0122599.
[17] Jansky S. Overcoming hybridization barriers in potato. Plant Breeding, 2006, 125(1): 1-12.
[18] Estrada R N. Frost resistant potato hybrids via Solanum acaule, Bitt. Diploid-Tetraploid crosses. American Potato Journal, 1980, 57(12): 609-619.
[19] Suárez S, Chaves E, Clausen A, Franco J. Solanum tuber-bearing species resistance behavior against Nacobbus aberrans. Journal of Nematology, 2009, 41: 5-10.
[20] Watanabe K N, Orrillo M, Vega S, Masuelli R, Ishiki K. Potato germplasm enhancement with disomic tetraploid Solanum acaule. II. Assessment of breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and S. acaule. Theoretical and Applied Genetics, 1994, 88(2): 135-140.
[21] Carputo D, Cardi T, Speggiorin M, Zoina A, Frusciante L. Resistance to blackleg and tuber soft rot in sexual and somatic interspecific hybrids with different genetic background. American Potato Journal, 1997, 74(3): 161-172.
[22] Frost K E, Jansky S H, Rouse D I. Transmission of Verticillium wilt resistance to tetraploid potato via unilateral sexual polyploidization. Euphytica, 2006, 149(3): 281-287.
[23] Jansky S H, Hamernik A, Bethke P C. Germplasm release: tetraploid clones with resistance to cold-induced sweetening. American Journal of Potato Research, 2011, 88(3): 218-225.
[24] Santini M, Camadro E L, Marcellán O N, Erazzú L E. Agronomic characterization of diploid hybrid families derived from crosses between haploids of the common potato and three wild Argentinian tuber-bearing species. American Journal of Potato Research, 2000, 77(4): 211-218.
[25] Bradshaw J E, Ramsay G. Utilisation of the commonwealth potato collection in potato breeding. Euphytica, 2005, 146(1): 9-19.
[26] Tucci M, Carputo D, Bile G, Frusciante L. Male fertility and freezing tolerance of hybrids involving Solanum tuberosum haploids and diploid Solanum species. Potato Research, 1996, 39(3): 345-353.
[27] Lindqvist-Kreuze H, Carbajulca D, Gonzalez- Escobedo G, PÉRez W, Bonierbale M. Comparison of transcript profiles in late blight-challenged Solanum cajamarquense and B3C1 potato clones. Molecular Plant Pathology, 2010, 11(4): 513-530.
[28] Bradshaw J E, Bryan G J, Ramsay G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research, 2006, 49(1): 49-65.
[29] Narancio R, Zorrilla P, Robello C, Gonzalez M, Vilaró F, Pritsch C, Rizza M D. Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European Journal of Plant Pathology, 2013, 136(4): 823-835.
[30] Jo K R, Arens M, Kim T Y, Jongsma M A, Visser R G F, Jacobsen E, Vossen J H. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theoretical and Applied Genetics, 2011, 123(8): 1331-1340.
[31] Villamon F G, Spooner D M, Orrillo M, Mihovilovich E, Pérez W, Bonierbale W. Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theoretical and Applied Genetics, 2005, 111(6): 1201-1214.
[32] Van der Vossen E, Sikkema A, Hekkert B, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal, 2003, 36: 867-882.
[33] Naess K S, Bradeen M J, Wielgus M S, Haberlach T G, McGrath M J, Helgeson J P. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theoretical and Applied Genetics, 2000, 101(5): 697-704.
[34] Laferriere T L, Helgeson P J, Allen C. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theoretical and Applied Genetics, 1999, 98(8): 1272-1278.
[35] Cardi T, D'Ambrosio E, Consoli D, Puite K J, Ramulu K S. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theoretical and Applied Genetics, 1993, 87(1): 193-200.
[36] Estrada N. Utilization of Solanum brevidens to transfer PLRV resistance into the cultivated potato, Solanum tuberosum.London: Royal Botanical Gardens, 1991.
[37] Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T. Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theoretical and Applied Genetics, 2008, 116(5): 691-700.
[38] Camadro E L, Carputo D, Peloquin S J. Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen- pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theoretical and Applied Genetics, 2004, 109(7): 1369-1376.
[39] Dionne L A. Studies on the use of Solanum acaule as a bridge between Solanum tuberosum and species in the series Bulbocastana, Cardiophylla and Pinnatisecta. Euphytica, 1963, 12(3): 263-269.
[40] Hermsen J G T. Crossability, fertility and cytogenetic studies in Solanum acaule × Solanum bulbocastanum. Euphytica, 1966, 15(2): 149-155.
[41] Singsit C, Hanneman R E. Rescuing abortive inter-EBN potato hybrids through double pollination and embryo culture. Plant Cell Reports, 1991, 9(9): 475-478.
[42] Chen Q, Lynch D, Platt H W, Li H Y, Shi Y, Li H J, Beasley J, Rakosy-Tican L, Theme R. Interspecific crossability and cytogenetic analysis of sexual progenies of Mexican wild diploid 1EBN species Solanum pinnatisectum and S. cardiophyllum. American Journal of Potato Research, 2004, 81(2): 159-169.
[43] Watanabe K N, Orrillo M, Vega S, Valkonen J P T, Pehu E, Hurtado A, Tanksley S D. Overcoming crossing barriers between nontuber-bearing and tuber-bearing Solanum species: towards potato germplasm enhancement with a broad spectrum of solanaceous genetic resources. Genome, 1995, 38: 27-35.
[44] Paz M M, Veilleux R E. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding, 1999, 118(1): 53-57.
[45] van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan G J. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics, 2006, 173(2):1075-1087.
[46] Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.
[47] Aversano R, Contaldi F, Ercolano M R, Grosso V, Iorizzo M, Tatino F, Xumerle L, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Cigliano R A, Capella-Gutierrez G T, Frusciante L, Bradeen J M, Carputo D. The Solanum commersonii Genome Sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. The Plant Cell, 2015, 27(4): 954-968.
[48] Gebhardt C, Valkonen J P T. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 2001, 39: 79-102.
[49] Slater A T, Cogan N O I, Hayes B J, Schultz L, Dale M F B, Bryan G J, Forster J W. Improving breeding efficiency in potato using molecular and quantitative genetics. Theoretical and Applied Genetics, 2014, 127(11): 2279-2292.
[50] Kearsey M J, Pooni H S. The genetical analysis of quantitative traits. Cheltenham: Stanley Thornes Ltd, 1998.
[51] Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 2008, 147(3): 969-977.
[52] Van Eck H J. Genetics of morphological and tuber traits. Amsterdam: Elsevier, 2007.
[53] Prashar A, Hornyik C, Young V, McLean K, Sharma S K, Dale M F B, Bryan G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theoretical and Applied Genetics, 2014, 127(10): 2159-2171.
[54] Li X Q, De Jong H, De Jong D M, De Jong W S. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theoretical and Applied Genetics, 2005, 110(6): 1068-1073.
[55] De Jong H. Inheritance of russeting in cultivated diploid potatoes. Potato Research, 1981, 24(3): 309-313.
[56] Kloosterman B, Abelenda J A, Gomez M M, Oortwijn M, de Boer J M, Kowitwanich K, Horvath B M, van Eck H J, Smaczniak C, Prat S, Visser R G, Bachem C W. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495(7440): 246-250.
[57] Celis-Gamboa C, Struik P C, Jacobsen E, Visser R G F. Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Annals of Applied Biology, 2003, 143(2): 175-186.
[58] Berg J H, Ewing E E, Plaisted R L, McMurry S, Bonierbale M W. QTL analysis of potato tuber dormancy. Theoretical and Applied Genetics, 1996, 93(3): 317-324.
[59] Levy D, Veilleux R E. Adaptation of potato to high temperatures and salinity-a review. American Journal of Potato Research, 2007, 84(6): 487-506.
[60] Ortiz R, Huaman Z. Inheritance of morphological and tuber characteristics. Wallingford, UK: CAB International, 1994.
[61] Anithakumari A M, Nataraja K N, Visser R G F, Linden C G. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 2012, 30(3): 1413-1429.
[62] Gangadhar B H, Yu J W, Sajeesh K, Park S W. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Molecular Genetics and Genomics, 2013, 289(2): 185-201.
[63] Zhu X, Richael C, Chamberlain P, Busse J S. Bussan A J, Jiang J, Bethke P C. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS One, 2014, 9(4): e93381.
[64] Marczewski W, Hennig J, Gebhardt C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.
[65] Ritter E, Debener T, Barone A, Salamini F, Gebhardt C. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991, 227(1): 81-85.
[66] Hämäläinen H J, Watanabe N K, Valkonen T J P, Arihara A, Plaisted L R, Pehu E, Miller L, Slack A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.
[67] Marczewski W, Flis B, Syller J, Schäfer-Pregl R, Gebhardt C. A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Molecular Plant-Microbe Interactions, 2001, 14(12): 1420-1425.
[68] Simko I, Jansky S, Stephenson S, Spooner D M. Genetics of resistance to pests and diseases. Amsterdam: Elsevier, 2007.
[69] Brown C R, Yang C P, Mojtahedi H, Santo G S, Masuelli R. RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2 population. Theoretical and Applied Genetics, 1996, 92(5): 572-576.
[70] Phillips M S. Inheritance of resistance to nematodes. Wallingford: CAB International, 1994.
[71] Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular Plant Pathology, 2013, 14(7): 740-757.
[72] Santa Cruz J H, Haynes K G, Christ B J. Effects of one cycle of recurrent selection for early blight resistance in a diploid hybrid Solanum phureja-S. stenotomum population. American Journal of Potato Research, 2009, 86(6): 490-498.
[73] Burkhart C R, Christ B J, Haynes K G. Non-additive genetic variance governs resistance to fusarium dry rot in a diploid hybrid potato population. American Journal of Potato Research, 2007, 84(3): 199-204.
[74] Dees M W, Lysøe E, Alsheikh M, Davik J, Brurberg M B. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation. Molecular Plant Pathology, 2015, 17(5): 703-713.
[75] Paget M F, Alspach P A, Genet R A, Apiolaza L A. Genetic variance models for the evaluation of resistance to powdery scab (Spongospora subterranea f. sp. subterranea) from long-term potato breeding trials. Euphytica, 2014, 197(3): 369-385.
[76] Wastie R L. Inheritance of fungal diseases of tubers. Wallingford: CAB International, 1994.
[77] Vleeshouwers V G, Raffaele S, Vossen J H, Champouret N, Oliva R, Segretin M E, Rietman H, Cano L M, Lokossou A, Kessel G, Pel M A, Kamoun S. Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology, 2011, 49: 507-531.
[78] Black W, Mastenbroek C, Mills W R, Peterson L C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica, 1953, 2(3):173-179.
[79] van der Lee T, Testa A, van't Klooster J, van den Berg-Velthuis G, Govers F. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Molecular Plant-Microbe Interactions, 2001, 14(12): 1444-1452.
[80] Park T H, Vleeshouwers V G A A, Jacobsen E, Van Der Vossen E, Visser R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breeding, 2009, 128(2): 109-117.
[81] van der Vossen E A, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 2005, 44(2): 208-222.
[82] Park T H, Gros J, Sikkema A, Vleeshouwers V G, Muskens M, Allefs S, Jacobsen E, Visser R G, van der Vossen E A. The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Molecular Plant-Microbe Interactions, 2005, 18(7): 722-729.
[83] Song J, Bradeen J M, Naess S K, Raasch J A, Wielgus S M, Haberlach G T, Liu J, Kuang H, Austin-Phillips S, Buell C R, Helgeson J P, Jiang J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9128-9133.
[84] Danan S, Veyrieras J B, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 2011, 11: 16.
[85] Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics, 2013, 29(4): 248-256.
[86] Champouret N. Functional genomics of Phytophthora infestans effectors and Solanum resistance genes[D]. Wageningen: Wageningen University, 2010.
[87] Zhang K, Xu J, Duan S G, Pang W F, Bian C S, Liu J, Jin L. NBS profiling identifies potential novel locus from Solanum demissum that confers broad-spectrum resistance to phytophthora infestans. Journal of Integrative Agriculture, 2014, 13(8): 1662-1671.
[88] Ballvora A, Ercolano M R, Weiss J, Meksem K, Bormann C A, Oberhagemann P, Salamini F, Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371.
[89] Lokossou A A, Park T H, van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson S C, Birch P R, Visser R G, Jacobsen E, van der Vossen E A. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions, 2009, 22(6): 630-641.
[90] Huang S, van der Vossen E A, Kuang H, Vleeshouwers V G, Zhang N, Borm T J, van Eck H J, Baker B, Jacobsen E, Visser R G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42(2): 251-261.
[91] Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers V G, van der Vossen E A, Qu D, Visser R G, Jacobsen E, Vossen J H. Cloning and characterization of R3b: members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions, 2011, 24(10): 1132-1142.
[92] Oosumi T, Rockhold D R, Maccree M M, Deahl K L, McCue K F, Belknap W R. Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. American Journal of Potato Research, 2009, 86(6): 456-465.
[93] Lokossou A A, Rietman H, Wang M, Krenek P, van der Schoot H, Henken B, Hoekstra R, Vleeshouwers V G, van der Vossen E A, Visser R G, Jacobsen E, Vosman B. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Molecular Plant-Microbe Interactions, 2010, 23(9): 1206-1216.
[94] Vleeshouwers V G, Rietman H, Krenek P, Champouret N, Young C, Oh S K, Wang M, Bouwmeester K, Vosman B, Visser R G, Jacobsen E, Govers F, Kamoun S, van der Vossen E A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes. PLoS One, 2008, 3(8): e2875.
[95] Wang M, Allefs S, Berg R G, Vleeshouwers V G A A, Vossen E A G, Vosman B. Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
[96] Foster S J, Park T H, Pel M, Brigneti G, Sliwka J, Jagger L, van der Vossen E, Jones J D. Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant-Microbe Interactions, 2009, 22(5): 589-600.
[97] ?liwka J, ?wi?tek M, Tomczyńska I, Stefańczyk E, Chmielarz M, Zimnoch-Guzowska E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1 during incompatible interactions with Phytophthora infestans. Plant Pathology, 2013, 62(5): 1072-1080.
[98] Barker H. Extreme resistance to potato virus V in clones of Solanum tuberosum that are also resistant to potato viruses Y and A: evidence for a locus conferring broad-spectrum potyvirus resistance. Theoretical and Applied Genetics, 1997, 95(8): 1258-1262.
[99] Jones R A C. Strain group specific and virus specific hypersensitive reactions to infection with potyviruses in potato cultivars. Annals of Applied Biology, 1990, 117(1): 93-105.
[100] Hamalainen J H, Kekarainen T, Gebhardt C, Watanabe K N, Valkonen J P. Recessive and dominant genes interfere with the vascular transport of potato virus A in diploid potatoes. Molecular Plant-Microbe Interactions, 2000, 13(4): 402-412.
[101] De Jong W, Forsyth A, Leister D, Gebhardt C, Baulcombe D C. A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical and Applied Genetics, 1997, 95(1): 246-252.
[102] Marczewski W, Hennig J, Gebhardt C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.
[103] Tommiska J T, Hämäläinen H J, Watanabe N K, Valkonen T J P. Mapping of the gene Nxphu that controls hypersensitive resistance to potato virus X in Solanum phureja IvP35. Theoretical and Applied Genetics, 1998, 96(6): 840-843.
[104] Marczewski W, Flis B, Syller J, Strzelczyk-?yta D, Hennig J, Gebhardt C. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical and Applied Genetics, 2004, 109(8): 1604-1609.
[105] Velásquez A C, Mihovilovich E, Bonierbale M. Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical and Applied Genetics, 2007, 114(6): 1051-1058.
[106] Hämäläinen H J, Watanabe N K, Valkonen T J P, Arihara A, Plaisted L R, Pehu E, Miller L, Slack A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.
[107] Brigneti G, Garcia-Mas J, Baulcombe C D. Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theoretical and Applied Genetics, 1997, 94(2): 198-203.
[108] Finkers-Tomczak A, Bakker E, de Boer J, van der Vossen E, Achenbach U, Golas T, Suryaningrat S, Smant G, Bakker J, Goverse A. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theoretical and Applied Genetics, 2011, 122(3): 595-608.
[109] Gebhardt C, Mugniery D, Ritter E, Salamini F, Bonnel E. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theoretical and Applied Genetics, 1993, 85(5): 541-544.
[110] Kreike C M, Koning J R A, Vinke J H, Ooijen J W, Stiekema W J. Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theoretical and Applied Genetics, 1994, 88(6): 764-769.
[111] van der Voort R J, Wolters P, Folkertsma R, Hutten R, van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R, Bakker J. Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theoretical and Applied Genetics, 1997, 95(5): 874-880.
[112] Bradshaw E J, Hackett A C, Meyer C R, Milbourne D, McNicol W J, Phillips S M, Waugh R. Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum subsp. tuberosum) with a view to marker-assisted selection. Theoretical and Applied Genetics, 1998, 97(1): 202-210.
[113] Rouppe van der Voort J, van der Vossen E, Bakker E, Overmars H, van Zandvoort P, Hutten R, Klein Lankhorst R, Bakker J. Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theoretical and Applied Genetics, 2000, 101(7): 1122-1130.
[114] Jacobs J M E, Eck H J, Horsman K, Arens P F P, Verkerk-Bakker B, Jacobsen E, Pereira A, Stiekema W J. Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei. Molecular Breeding, 1996, 2(1): 51-60.
[115] Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14(4): 421-429.
[116] Kreike C M, Koning J R A, Vinke J H, Ooijen J W, Gebhardt C, Stiekema W J. Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theoretical and Applied Genetics, 1993, 87(4): 464-470.
[117] Kreike C M, Kok-Westeneng A A, Vinke J H, Stiekema W J. Mapping of QTLs involved in nematode resistance, tuber yield and root development in Solanum sp. Theoretical and Applied Genetics, 1996, 92(3): 463-470.
[118] van der Voort R J, Lindeman W, Folkertsma R, Hutten R, Overmars H, van der Vossen E, Jacobsen E, Bakker J. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theoretical and Applied Genetics, 1998, 96(5): 654-661.
[119] Tung P X. Genetic variation for bacterial wilt resistance in a population of tetraploid potato. Euphytica, 1992, 61(1): 73-80.
[120] Yu Y, Ye W, He L, Cai X, Liu T, Liu J. Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Reports, 2013, 32(11): 1687-1701.
[121] Kim-Lee H, Moon J S, Hong Y J, Kim M S, Cho H M. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. American Journal of Potato Research, 2005, 82(2): 129-137.
[122] Chen L, Guo X, Xie C, He L, Cai X, Tian L, Song B, Liu J. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theoretical and Applied Genetics, 2013, 126(7): 1861-1872.
[123] Fock I, Collonnier C, Lavergne D, Vaniet S, Ambroise A, Luisetti J, Kodja H, Sihachakr D. Evaluation of somatic hybrids of potato with Solanum stenotomum after a long-term in vitro conservation. Plant Physiology & Biochemistry, 2007, 45(3/4): 209-215.
[124] Chung Y S, Holmquist K, Spooner D M, Jansky S H. A test of taxonomic and biogeographic predictivity: resistance to soft rot in wild relatives of cultivated potato. Phytopathology, 2011, 101(2): 205-212.
[125] Wanner L A, Kirk W W. Streptomyces – from basic microbiology to role as a plant pathogen. American Journal of Potato Research, 2015, 92(2): 236-242.
[126] Khatri B B, Tegg R S, Brown P H, Wilson C R. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathology, 2011, 60(4): 776-786.
[127] Wilson C R, Tegg R S, Wilson A J, Luckman G A, Eyles A, Yuan Z Q, Hingston L H, Conner A J. Stable and extreme resistance to common scab of potato obtained through somatic cell selection. Phytopathology, 2010, 100(5): 460-467.
[128] Salaman R N. The inheritance of colour and other characters in the potato. Journal of Genetics, 1910, 1(1): 7-46.
[129] Jong H D. Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. American Potato Journal, 1991, 68(9): 585-593.
[130] Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical and Applied Genetics, 1989, 78(1): 65-75.
[131] Van Eck H J, Jacobs J M E, Dijk J, Stiekema W J, Jacobsen E. Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theoretical and Applied Genetics, 1993, 86(2): 295-300.
[132] De Jong W S, Eannetta N T, DeJong D M, Bodis M. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical and Applied Genetics, 2004, 108(3): 423-432.
[133] De Jong W S, De Jong D M, De Jong H, Kalazich J, Bodis M. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2003, 107(8): 1375-1383.
[134] Jung C S, Griffiths H M, De Jong D M, Cheng S, Bodis M, De Jong W S. The potato P locus codes for flavonoid 3′,5′- hydroxylase. Theoretical and Applied Genetics, 2004, 110(2): 269-275.
[135] Zhang Y, Cheng S, Jong D M, Griffiths H, Halitschke R, De Jong W S. The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009, 119(5): 931-937.
[136] Jung C S, Griffiths H M, Jong D M, Cheng S, Bodis M, Kim T S, De Jong W S. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120(1): 45-57.
[137] Masson M F. Mapping, combining abilites, heritabilities and heterosis with 4x× 2x crosses in potato. Madison: University of Wisconsin-Madison, 1985.
[138] De Jong H, Burns V J. Inheritance of tuber shape in cultivated diploid potatoes. American Journal of Potato Research, 1993, 70: 267-283.
[139] Li L, Paulo M J, Strahwald J, Lübeck J, Hofferbert H R, Tacke E, Junghans H, Wunder J, Draffehn A, Eeuwijk F, Gebhardt C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116(8): 1167-1181.
[140] Schreiber L, Nader-Nieto A C, Schonhals E M, Walkemeier B, Gebhardt C. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). Genes Genomes Genetics, 2014, 4(10): 1797-1811.
[141] Wiberley-Bradford A E, Busse J S, Jiang J, Bethke P C. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes, 2014, 7: 801.
[142] Lin Y, Liu T, Liu J, Liu X, Ou Y, Zhang H, Li M, Sonnewald U, Song B, Xie C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and sucrose nonfermenting1-related protein kinase. Plant Physiology, 2015, 168(4): 1807-1819.
[143] Urbany C, Stich B, Schmidt L, Simon, Berding H, Junghans H, Niehoff K, Braun A, Tacke E, Hofferbert H, Lübeck J, Strahwald J, Gebhardt C. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics, 2011, 12(1): 1-14.
[144] Monneveux P, Ramírez D A, Pino M. Drought tolerance in potato (S.tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science, 2013, 205-206: 76-86.
[145] Weisz R, Kaminski J, Smilowitz Z. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops. American Potato Journal, 1994, 71(12): 829-840.
[146] Anithakumari A M, Dolstra O, Vosman B, Visser R G F, Linden C G. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica, 2011, 181(3): 357-369.
[147] Kondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biology, 2012, 12: 74.
[148] Zhang N, Yang J, Wang Z, Wen Y, Wang J, He W, Liu B, Si H, Wang D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One, 2014, 9(4): e95489.
[149] Stone J M, Palta J P, Bamberg J B, Weiss L S, Harbage J F. Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(16): 7869-7873.
[150] Ahn Y, Zimmerman J L. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell & Environment, 2006, 29(1): 95-104.
[151] Simko I, Costanzo S, Haynes K G, Christ B J, Jones R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108(2): 217-224.
[152] Bradshaw J E, Mackay G R. Breeding strategies for clonally propagated potatoes. Wallingford: Cab International, 1994.
[153]金黎平, 杨宏福. 马铃薯遗传育种中的染色体倍性操作. 农业生物技术学报, 1996, 1: 70-75.
Jin L P, Yang H F. Chromosomal manipulation in potato genetics and breeding. Journal of Agricultutal Biotechnology, 1996, 1: 70-75. (in Chinese)
[154] Hougas R W, Peloquin S J. The potential of potato haploids in breeding and genetic research. American Journal of Potato Research, 1958, 35: 701-707.
[155] Hougas R W, Peloquin S J, Gabert A C. Effect of seed-partent and pollinator on frequency of haploids in Solannum tuberosum. Crop Science, 1964, 4: 593-595.
[156] Hermsen J G T, Verdenius J. Selection from Solanum tuberosum group phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot. Euphytica, 1973, 22(2): 244-259.
[157] Hougas R W, Peloquin S J. Crossability of Solannum tuberosum haploids with diploid Solanum species. European potato journal, 1960, 3: 325-330.
[158] Chase S C. Analytical breeding of Solanum tuberosum. Canadian Journal of Genetics and Cytology, 1963, 5: 359-363.
[159] Yeh B P, Peloquin S J, Hougas R W. Meiosis in Solanum tuberosum haploids and haploid-haploid F1 hybrids. Canadian Journal of Genetics and Cytology, 1964, 6: 393-402.
[160]屈冬玉, 朱德蔚, 王登社, 高占旺, Ramanna M S, Jacobsen E. 马铃薯2n配子发生的遗传分析. 园艺学报, 1995, 22(1): 61-66.
Qu D Y, Zhu D W, Wang D S, Gao Z W, Ramanna M S, Jacobsen E. Genetic analysis of 2n pollen formation in potato. Acta Horticulturae Sinica, 1995, 22(1): 61-66. (in Chinese)
[161] Stelly D M, Peloquin S J, Palmer R G, Crane C F. Mayer’s hemalum-methy salicylate: a stain-clearing technique for observations within whole ovules. Stain Technology, 1984, 59: 155-161.
[162] Erazzú L E, Camadro E L. Direct and indirect detection of 2n eggs in hybrid diploid families derived from haploid tbr × wild species crosses. Euphytica, 2006, 155(1): 57-62.
[163] Weber B, Jansky S. Resistance to Alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium. Phytopathology, 2012, 102: 214-221.
[164] Qu D, Zhu D, Ramanna M S, Jacobsen E. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains. Euphytica, 1995, 92(3): 313-320.
[165] Murphy A M, Jong H, Tai G C C. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x-2x crosses in potatoes. Euphytica, 1995, 82(3): 227-233.
[166] Park T H, Kim J B, Hutten R C B, van Eck H J, Jacobsen E, Visser R G F. Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genetics, 2007, 176(1): 85-94.
[167] Mendiburu A O, Peloquin S J. The significance of 2n gametes in potato breeding. Theoretical and Applied Genetics, 1977, 49(2): 53-61.
[168] Weisz R, Kaminski J, Smilowitz Z. Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. Journal of Plant Physiology, 2013, 170(17): 1541-1548.
[169] Thieme R, Rakosy-Tican E, Nachtigall M, Schubert J, Hammann T, Antonova O, Gavrilenko T, Heimbach U, Thieme T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Reports, 2010, 29(10): 1187-1201.
[170] Luo Z W, Hackett C A, Bradshaw J E, McNicol J W, Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157(3): 1369-1385.
[171] Zhang L H, Mojtahedi H, Kuang H, Baker B, Brown C R. Marker-assisted selection of columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop science, 2007, 47(5): 2021-2026.
[172] Kasai K, Morikawa Y, Sorri V A, Valkonen J P, Gebhardt C, Watanabe K N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000, 43(1): 1-8.
[173] Sorri A V, Watanabe N K, Valkonen T J P. Predicted kinase-3a motif of a resistance gene analogue as a unique marker for virus resistance. Theoretical and Applied Genetics, 1999, 99(1): 164-170.
[174] Fulladolsa A C, Navarro F M, Kota R, Severson K, Palta J P, Charkowski A O. Application of marker assisted selection for potato virus Y resistance in the university of wisconsin potato breeding program. American Journal of Potato Research, 2015, 92(3): 444-450.
[175] Mori K, Sakamoto Y, Mukojima N, Tamiya S, Nakao T, Ishii T, Hosaka K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011, 180(3): 347-355.
[176] Szajko K, Strzelczyk-?yta D, Marczewski W. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014, 34(1): 267-271.
[177] Witek K, Strzelczyk-?yta D, Hennig J, Marczewski W. A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-f sto and Ns. Molecular Breeding, 2006, 18(3): 273-275.
[178] Marczewski W, Strzelczyk-?yta D, Hennig J, Witek K, Gebhardt C. Potato chromosomes IX and XI carry genes for resistance to potato virus M. Theoretical and Applied Genetics, 2006, 112(7): 1232-1238.
[179] Kim H, Lee H, Jo K, Mortazavian S M M, Huigen D J, Evenhuis B, Kessel G, Visser R G F, Jacobsen E, Vossen J H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theoretical and Applied Genetics, 2012, 124(5): 923-935.
[180] Xu J, Wang J, Pang W F, Bian C S, Duan S G, Liu J, Huang S, Jin L, Qu D. The potato R10 resistance specificity to late blight is conferred by both a single dominant R gene and quantitative trait loci. Plant Breeding, 2013, 132(4): 407-412.
[181] Colton L M, Groza H I, Wielgus S M, Jiang J. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop science, 2006, 46(2): 589-594.
[182] Wang M, Allefs S, Berg R G, Vleeshouwers V G A A, Vossen E A G, Vosman B. Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
[183] Zhu S, Li Y, Vossen J H, Visser R G F, Jacobsen E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012, 21(1): 89-99.
[184] Sanetomo R, Hosaka K. A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = 4x = 48). Breeding science, 2011, 61(4): 426-434.
[185]朱文文, 徐建飞, 李广存, 段绍光, 刘杰, 卞春松, 庞万福, De Jong W, 金黎平. 马铃薯块茎形状基因CAPS标记的开发与验证. 作物学报, 2015, 41(10): 1529-1536.
Zhu W W, Xu J F, Li G C, Duan S G, Liu J, Bian C S, Pang W F, De Jong W, Jin L P. Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agronomica Sinica, 2015, 41(10): 1529-1536. (in Chinese)
[186] Milczarek D, Flis B, Przetakiewicz A. Suitability of molecular markers for selection of potatoes resistant to Globodera spp. American Journal of Potato Research, 2011, 88(3): 245-255.
[187] Whitworth J L, Novy R G, Hall D G, Crosslin J M, Brown C R. Characterization of broad spectrum potato virus Y resistance in a Solanum tuberosum ssp. andigena-derived population and select breeding clones using molecular markers, grafting, and field inoculations. American Journal of Potato Research, 2009, 86(4): 286-296.
[188] Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop science, 2008, 48(5): 1649-1664.
[189] Heffner E L, Lorenz A J, Jannink J L, Sorrells M E. Plant breeding with genomic selection: gain per unit time and cost. Crop science, 2010, 50(5): 1681-1690
[190] Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.
[191] Wong C K, Bernardo R. Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theoretical and Applied Genetics, 2008, 116(6): 815-824.
[192] Zhong S, Dekkers J C, Fernando R L, Jannink J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics, 2009, 182(1): 355-364.
[193] Vos P, Uitdewilligen J, Voorrips R, Visser, R, van Eck H. Development and analysis of a 20K SNP array for potato (Solanum tuberosum ): an insight into the breeding history. Theoretical and Applied Genetics, 2015, 128(12): 2387-2401.
[194] Waltz E. USDA approves next-generation GM potato. Nature Biotechnology, 2015, 33(1): 12-13.
[195] Perlak F J, Stone T B, Muskopf Y M, Petersen L J, Parker G B, McPherson S A, Wyman J, Love S, Reed G, Biever D, Fischhoff D A. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Molecular Biology, 1993, 22(2): 313-321.
[196] Reed G L, Jensen A S, Riebe J, Head G, Duan J J. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 2001, 100(1): 89-100.
[197] Lawson E C, Weiss J D, Thomas P E, Kaniewski W K. NewLeaf Plus® Russet Burbank potatoes: replicase-mediated resistance to potato leafroll virus. Molecular Breeding, 2001, 7(1): 1-12.
[198] Soubrier F, Cameron B, Manse B, Somarriba S, Dubertret C, Jaslin G, Jung G, Caer C L, Dang D, Mouvault J M, Scherman D, Mayaux J F, Crouzet J. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Therapy, 1999, 6(8): 1482-1488.
[199] Schouten H J, Krens F A, Jacobsen E. Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports, 2006, 7(8): 750-753.
[200] Oliveira P H, Mairhofer J. Marker-free plasmids for biotechnological applications - implications and perspectives. Trends Biotechnology, 2013, 31(9): 539-547.
[201] Jacobsen E, Schouten H J. Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Research, 2008, 51(1): 75-88.
[202] Jansen R, Embden J D A V, Gaastra W, Schouls L M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575.
[203] Huang S, Weigel D, Beachy R N, Li J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.
[204] Ledford H. CRISPR, the disruptor. Nature, 2015, 522(7554): 20-24.
[205] Butler N M, Atkins P A, Voytas D F, Douches D S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One, 2015, 10(12): e0144591.
[206] Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 2015, 34(9): 1473-1476.
[207] Gao F, Shen X Z, Jiang F, Wu Y, Han C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nature Biotechnology, 2016, 34(7): 768-773.
[208] Almekinders C J M, Mertens L, Loon J P, Lammerts van Bueren E T. Potato breeding in the Netherlands: a successful participatory model with collaboration between farmers and commercial breeders. Food Security, 2014, 6(4): 515-524.
[209] van Bueren E T L. A collaborative breeding strategy for organic potatoes in the Netherlands. Ecology and farming: international IFOAM-magazine, 2010, 2: 50-53.
[210] van Bueren L E T, Engelen C, Hutten R. Participatory potato breeding model involving organic farmers and commercial breeding companies in the Netherlands. Corvallis: 7 t h Organic Seed Growers Conference, 2014.
[211] Tiemens-Hulscher M, Delleman J, Eising J, Van Bueren E T L. Potato breeding: a practical manual for the potato chain. Den Haag: Ardappelwereld BV, 2013. |
[1] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[2] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[3] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[4] | 王凯,张海亮,董祎鑫,陈少侃,郭刚,刘林,王雅春. 基于牧场管理数据的奶牛健康性状定义及遗传参数估计[J]. 中国农业科学, 2022, 55(6): 1227-1240. |
[5] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[6] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[7] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665. |
[8] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[9] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[10] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[11] | 路粉,孟润杰,吴杰,赵建江,李洋,毕秋艳,韩秀英,李敬华,王文桥. 马铃薯晚疫病菌对霜脲氰抗性动态监测及药效验证[J]. 中国农业科学, 2022, 55(18): 3556-3564. |
[12] | 张晓萍,撒世娟,伍涵宇,乔丽媛,郑蕊,姚新灵. 马铃薯叶片气孔的开张与关闭同步伴随果胶的降解与合成[J]. 中国农业科学, 2022, 55(17): 3278-3288. |
[13] | 陈学森,王楠,张宗营,毛志泉,尹成苗. 关于果树种质资源与遗传育种若干问题的理解与思考[J]. 中国农业科学, 2022, 55(17): 3395-3410. |
[14] | 冀晓昊,刘凤之,王宝亮,刘培培,王海波. 葡萄醇酰基转移酶编码基因遗传变异研究[J]. 中国农业科学, 2022, 55(14): 2797-2811. |
[15] | 李文丽, 袁剑龙, 段惠敏, 蒋彤晖, 刘玲玲, 张峰. 马铃薯块茎质地品质的综合评价[J]. 中国农业科学, 2022, 55(12): 2278-2293. |
|