[1] 张风娟, 李健, 杜成忠, 杨丽涛, 李杨瑞, 邢永秀. 不同甘蔗品种叶片气孔对水分胁迫的响应. 广西植物, 2014(6): 821-827.
Zhang F J, Li J, Du C Z, Yang L T, Li Y R, Xing Y X. Stomatal response to water stress in leaves of different sugarcane cultivars. Guihaia, 2014(6): 821-827. (in Chinese)
[2] 吴才文, 范源洪, 陈学宽, 刘家勇, 赵俊, 赵培方, 夏红明, 杨昆. 云南抗旱甘蔗品种的选育及效果. 中国糖料, 2012(4): 37-39.
Wu C W, Fan Y H, Chen X K, Liu J Y, Zhao J, Zhao P F, Xia H M, Yang K. Breeding of drought-resistant sugarcane varieties in Yunnan. Sugar crops of China, 2012(4): 37-39. (in Chinese)
[3] Inman-Bamber N G, Smith D M. Water relations in sugarcane and response to water deficits. Field Crops Research, 2005, 92: 185-202.
[4] Graça J P D, Rodrigues F A, Farias J R B, de Oliveira M C N, Zingaretti C B H, Sonia M Z. Physiological parameters in sugarcane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology, 2010, 22(3): 187-197.
[5] Zhao D, Glaz B, Jack C. Sugarcane response to water-deficit stress during early growth on organic and sand soils. American Journal of Agricultural and Biological Sciences, 2010, 5(3): 403-414.
[6] 罗俊, 张木清, 林彦铨, 张华, 陈如凯. 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 2004, 37(11): 1718-1721.
Luo J, Zhang M Q, Lin Y Q, Zhang H, Chen R K. Studies on the relationship of chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under water stress. Scientia Agricultura Sinica, 2004, 37(11): 1718-1721. (in Chinese)
[7] Silva de A M, John L J, Silva J A G D, Sharma V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 2007, 19(3): 193-201.
[8] Begum M K, Alam M R, Islam M S, Arefin M S. Effect of water stress on physiological characters and juice quality of sugarcane. Sugar Tech, 2012, 14(2): 161-167.
[9] Basnayake J, Jackson P A, Inman-Bamber N G, Lakshmanan P. Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. Journal of Experimental Botany, 2012, 63(16): 6023-6033.
[10] Silva M d A, Jifon J L, Silva J A G d, Dos Santos C M, Sharma V. Relationships between physiological traits and productivity of sugarcane in response to water deficit. Journal of Agricultural Science, 2012, 152(1): 104-118.
[11] 金伟, 杨丽涛, 英潘, 杨建波, 罗超有, 李杨瑞. 不同甘蔗品种对干旱和复水的生态生理响应. 南方农业学报, 2012, 43(12): 1945-1951.
Jin W, Yang L T, Ying P, Yang J B, Luo C Y, Li Y R. Eco-physiological responses of different sugarcane varieties to drought and re-watering. Journal of Southern Agriculture, 2012, 43(12): 1945-1951. (in Chinese)
[12] 潘方胤, 杨俊贤, 吴文龙, 刘福业, 吴建涛, 彭冬永, 陈勇生. 甘蔗育种中抗旱品系筛选及简易鉴定. 广东农业科学, 2012(16): 10-12.
Pan F Y, Yang J X, Wu W L, Liu F Y, Wu J T, Peng D Y, Chen Y S. Breeding and simple identification of drought-tolerant sugarcane line. Guangdong Agricultural Sciences, 2012(16): 10-12. (in Chinese)
[13] 陈义强, 邓祖湖, 郭春芳, 陈如凯, 张木清. 甘蔗常用亲本及其衍生品种的抗旱性评价. 中国农业科学, 2007, 40(6): 1108-1117.
Chen Y Q, Deng Z H, Guo C F, Chen R K, Zhang M Q. Drought resistant evaluations of commonly used parents and their derived varieties. Scientia Agricultura Sinica, 2007, 40(6): 1108-1117. (in Chinese)
[14] Silva M D A, Soares R A B, Landell M G D A, Campana M P. Agronomic performance of sugarcane families in response to water stress. Bragantia, 2008, 67(3): 655-661.
[15] Tardieu F. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science, 2003, 8(1): 9-14.
[16] Basnayake J, Jackson P A, Inman-Bamber N G, Lakshmanan P. Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity. Journal of Experimental Botany, 2015, 66(13): 3945-3958.
[17] Sliva M A, Silva J A G, Da Jifon J L, Sharma V. Use of physiological parameters to detect differences in drought tolerance among sugarcane genotypes. Proceedings of International Society of Sugar Cane Technologist, 2007, 26: 541-547.
[18] Inman-Bamber N G. Sugarcane water stress criteria for irrigation and drying off. Field Crops Research, 2004, 89(1): 107-122.
[19] Jackson P A, McRae T A. Gains from selection of broadly adapted and specifically adapted sugarcane families. Field Crops Research, 1998, 59(3): 151-162.
[20] Jackson P A, McRae T A. Selection of sugarcane clones in small plots: Effects of plot size and selection criteria. Crop Science, 2001, 41(2): 315-322.
[21] Stringer J K, Cullis B R, Thompson R. Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16(2): 269-281.
[22] Zhao P F, Liu J Y, Yang K, Xia H M, Wu C W, Chen X K, Zhao J, Yang H C, Li J, Zan F G, Wu Z D, Yao L, Li F Q, Zhao L P. Registration of ‘YZ05-51’ sugarcane. Journal of Plant Registration, 2015, 9(2): 172-178.
[23] Sinclair T R. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Functional Plant Biology, 2012, 39(5): 359-365.
[24] Condon A G, Richards R A, Rebetzke G J, Farquhar G D. Breeding for high water-use efficiency. Journal of Experimental Botany, 2004, 55(407): 2447-2460.
[25] Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Saavedra A L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 1998, 38(6): 1467-1475.
[26] Jiang G M, Sun J Z, Liu H Q, Qu C M, Wang K J, Guo R J, Bai K Z, Gao L M, Kuang T Y. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. Journal of Plant Research, 2003, 116(5): 347-354.
[27] Zheng T C, Zhang X K, Yin G H, Wang L N, Han Y L, Chen L, Huang F, Tang J W, Xia X C, He Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research, 2011, 122(3): 225-233.
[28] Horie T, Matsuura S, Takai T, Kuwasaki K, Ohsumi A, Shiraiwa T. Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant Cell and Environment, 2006, 29(4): 653-660.
[29] Prashar A, Yildiz J, McNicol J W, Bryan G J, Jones H G. Infra-red thermography for high throughput field phenotyping in solanum tuberosum. PloS one, 2013, 8: e658166.
[30] Luo J, Pan Y B, XU L P, Zhang Y Y, Zhang H, Chen R K, Que Y X. Photosynthetic and canopy characteristics of different varieties at the early elongation stage and their relationships with the cane yield in sugarcane. The Scientific World Journal, 2014(2014): 707095.
[31] Furbank R T, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 2011, 16(12): 635-644.
[32] Silva M D A, Jifon J L, Sharma V, Da Silva J A G, Caputo M M, Damaj M B, Guimaraes E R, Ferro M I T. Use of physiological parameters in screening drought tolerance in sugarcane genotypes. Sugar Tech, 2011, 13(3): 191-197. |