[1] Escobar C, Barcala M, Cabrera J, Fenoll C. Overview of root-knot nematodes and giant cells. Advances in Botanical Research, 2015, 73: 1-24.
[2] Wesemael W M L, Viaene N, Moens M. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 2011, 13(1): 3-16.
[3] Djian-Caporalino C, Palloix A, Fazari A, Marteu N, Barbary A, Abad P, Taussig C. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC plant biology, 2014, 14(1): 53.
[4] Skálová D, Navrátilová B, Lebeda A. Embryo rescue of cucumber (Cucumis sativus), muskmelon (C. melo) and some wild Cucumis species (C. anguria, C. zeyheri, and C. metuliferus). Journal of Applied Botany and Food Quality, 2008, 82(1): 83-89.
[5] Walters S A, Wehner T C. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica, 2002, 128(3): 371-374.
[6] 栗丽, 洪坚平, 谢英荷, 杨彦, 张璐. 生物菌肥对采煤塌陷复垦土壤生物活性及盆栽油菜产量和品质的影响. 中国生态农业学报, 2010, 18(5): 939-944.
Li L, Hong J P, Xie Y H, Yang Y, Zhang L. Effect of bacterial manure on soil biological activity, yield and quality of rape in reclaimed core-mining areas. Chinese Journal of Eco-Agriculture, 2010, 18(5): 939-944. (in Chinese)
[7] 席先梅, 白全江, 张庆萍, 李玉民, 贺小勇, 孔庆全, 魏海明, 赵存虎. 5种生物制剂对设施蔬菜根结线虫防治技术研究. 植物保护, 2015, 41(4): 203-207.
Xi X M, Bai Q J, Zhang Q P, Li Y M, He X Y, Kong Q Q, Wei H M, Zhao C H. Control effect of five biological agents on vegetable root-knot nematodes in greenhouse. Plant Protection, 2015, 41(4): 203-207. (in Chinese)
[8] Yao Y R, Tian X L, Shen B M, Mao Z C, Chen G H, Xie B Y. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 2015, 31(4): 549-556.
[9] Kubicek C P, Esser K, Druzhinina I S. Environmental and microbial relationships. Springer Science & Business Media, 2007.
[10] Becker J O, Zavaleta-Mejia E, Colbert S F, Schroth M N, Weinhold A R, Hancock J G, Van Gundy S D. Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology, 1988, 78(11): 1466-1469.
[11] 葛均青, 于贤昌, 王竹红. 微生物肥料效应及其应用展望. 中国生态农业学报, 2003, 11(3): 87-88.
Ge J Q, Yu X C, Wang Z H. The function of microbial fertilizer and its application prospects. Chinese Journal of Eco-Agriculture, 2003, 11(3): 87-88. (in Chinese)
[12] Guo J H, Qi H Y, Guo Y H, Ge H L, Gong L Y, Zhang L X, Sun P H. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 2004, 29: 66-72.
[13] ALi N I, Siddiqui I A, Shaukat S S, Zaki M J. Nematicidal activity of some strains of Pseudomonas spp. Soil Biology and Biochemistry, 2002, 34(8): 1051-1058.
[14] 马金慧, 朱萍萍, 茆振川, 张晓平, 谢丙炎, 李惠霞. 哈茨木霉菌株 TRI2 的鉴定及其对黄瓜根结线虫的防治作用. 中国农学通报, 2014, 30(22): 263-269.
Ma J H, Zhu P P, Mao Z C, Zhang X P, Xie B Y, Li H X. Identification of Trichoderma harzianum TRI2 and its biological control effect against root-knot nematode. Chinese Agricultural Science Bulletin, 2014, 30(22): 263-269. (in Chinese)
[15] Anastasiadis I A, Giannakou I O, Prophetou- Athanasiadou D A, Gowen S R. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Protection, 2008, 27(3): 352-361.
[16] Hu M X, Zhuo K, Liao J L. Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls. Phytopathology, 2011, 101(11): 1270-1277.
[17] 方中达. 植病研究方法. 北京: 中国农业出版社, 1998: 307-311.
Fang Z D. Plant Pathology Research Methods. Beijing: China Agriculture Press, 1998: 307-311. (in Chinese)
[18] Garabedian S, Van Gundy S D. Use of avermectins for the control of Meloidogyne incognita on tomatoes. Journal of Nematology, 1983, 15(4): 503-510.
[19] Park J O, Hargreaves J R, McConville E J, Stirling G R, Ghisalberti E L, Sivasithamparam K. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in applied microbiology, 2004, 38(4): 271-276.
[20] Huang X, Zhao N, Zhang K. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology, 2004, 155(10): 811-816.
[21] Bonants P J M, Fitters P F L, Thijs H, den-Belder E, Waalwijk C, Henfling J W. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 1995, 141(4): 775-784.
[22] Singh S, Mathur N. In vitro studies of antagonistic fungi against the root-knot nematode, Meloidogyne incognita. Biocontrol Science and Technology, 2010, 20(3): 275-282.
[23] Abbasi M W, Zaki M J, Anis M. Application of Bacillus species cultured on different low cost organic substrates for the control of root-knot nematode infection on okra (Abelmoschus esculentus Moench). Pakistan Journal of Botany, 2013, 45(3): 1079-1084.
[24] Kiewnick S, Sikora R A. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological control, 2006, 38(2): 179-187.
[25] Huang W K, Cui J K, Liu S M, Kong L A, Wu Q S, Peng H, Peng D L. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biological Control, 2016, 92: 31-37.
[26] 林森, 武侠, 曹君正, 王凤龙. 产生几丁质酶的交枝顶孢 (Acremonium implicatum) 对南方根结线虫生防潜力. 植物病理学报, 2013, 43(5): 509-517.
Lin S, Wu X, Cao J Z, Wang F L. Biocontrol potential of chitinase-producing nematophagous fungus Acremonium implicatum against Meloidogyne incognita. Acta Phytopathologica Sinica, 2013, 43(5): 509-517. (in Chinese)
[27] Abd-El-Khair H, El-Nagdi W M A. Field application of bio-control agents for controlling fungal root rot and root-knot nematode in potato. Archives of Phytopathology and Plant Protection, 2014, 47(10): 1218-1230.
[28] Christiansen-Weniger C, Van Veen J A. NH4+-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Applied and Environmental Microbiology, 1991, 57(10): 3006-3012.
[29] Fulchieir M, Lucangeli C, Bottini R. Inoculation with Azospirillum lipoferum affect growth and gibberellin status on corn seedling roots. Plant Cell Physiology, 1993, 34(8): 1305-1309.
[30] Schippers B, Bakker A W, Bakker A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practice. Annual Review of Phytopathology, 1987, 25: 339-358.
[31] Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2004, 2(1): 43-56.
[32] Bae H, Roberts D, Lim H, Strem M, Park S, Ryu C, Melnick R, Bailey B. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions, 2011, 24(3): 336-351.
[33] Brunner K, Zeilinger S, Ciliento R, Woo S, Lorito M, Kubicek C, Mach R. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 2005, 71(7): 3959-3965.
[34] 王振, 李世东, 缪作清, 郭荣君, 孙漫红. 有机物与淡紫紫孢霉对番茄根结线虫病的协同防治. 中国生物防治学报, 2015, 31(1): 130-138.
Wang Z, Li S D, Miao Z Q, Guo R J, Sun M H.Synergistic efficacy of Purpureocillium lilacinum and organic material against tomato root-knot nematode. Chinese Journal of Biological Control, 2015, 31(1): 130-138. (in Chinese) |