[1] Tsubooka N, Ichisaka T, Okita K, Takahashi K, Nakagawa M, Yamanaka S. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 2009, 14:683-694.
[2] Cho S J, Choi H W, Cho J, Jung S, Seo H G, Do J T. Activation of pluripotency genes by a nanotube-mediated protein delivery system. Molecular Reproduction and Development, 2013, 80:1000-1008.
[3] Firor A E, Jares A. Nuclear localization of SALL4: A stemness transcription factor. Cell Cycle, 2014, 13:1522-1523.
[4] de Celis J F, Barrio R. Regulation and function of Spalt proteins during animal development. International Journal of Developmental Biology, 2009, 53:1385-1398.
[5] Al-Baradie R, Yamada K, St Hilaire C, Chan W M, Andrews C, McIntosh N, Nakano M, Martonyi E J, Raymond W R, Okumura S, Okihiro M M, Engle E C. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. American Journal of Human Genetics, 2002, 71:1195-1199.
[6] Vigouroux S, Furukawa Y, Farout L, Kish S J, Briand M, Briand Y. Peptidase activities of the 20/26S proteasome and a novel protease in human brain. Journal of Neurochemistry, 2003, 84:392-396.
[7] Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Molecular and Cellular Biology, 2010, 30:5364-5380.
[8] Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, Kodama T, Aburatani H, Asashima M, Yoshida N, Nishinakamura R. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development, 2006, 133:3005-3013.
[9] Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel K P, Bradley A. A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis, 2007, 45:51-58.
[10] Melton C, Judson R L, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 2010, 463:621-626.
[11] Yang J, Gao C, Chai L, Ma Y. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One, 2010, 5:e10766.
[12] Hobbs R M, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi P P. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell, 2012, 10:284-298.
[13] Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Molecular and Cellular Biology, 2010, 30:5364-5380.
[14] Ma Y P, Cui W, Yang J C, Qu J, Di C H, Amin H M. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood, 2006, 108:2726-2735.
[15] Yang J C, Gao C, Chai L, Ma Y P. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One, 2010, 5: e10766.
[16] Shuai X, Zhou D B, Shen T, Wu Y J, Zhang J P, Wang X. Overexpression of the novel oncogene SALL4 and activation of the Wnt/beta-catenin pathway in myelodysplastic syndromes. Cancer Genet Cytogen, 2009, 194:119-124.
[17] Li H, Fan R, Sun M, Jiang T, Gong Y. Nspc1 regulates the key pluripotent Oct4-Nanog-Sox2 axis in P19 embryonal carcinoma cells via directly activating Oct4. Biochemical and Biophysical Research Communications, 2013, 440:527-532.
[18] Yang J C, Chai L, Fowles T C, Alipio Z, Xu D, Fink L M. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proceedings of the National Academy of Science of the United States of America, 2008, 105:19756-19761.
[19] Cox J L, Mallanna S K, Luo X, Rizzino A. Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS One, 2010, 5:e15486.
[20] Zhang J Q, Tam W L, Tong G Q, Wu Q, Chan H Y, Soh B S, Lou Y F, Yang J C, Ma Y P, Chai L, Ng H H, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology, 2006, 8:1114-1125.
[21] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Shinya Y. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131:861-72.
[22] Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D, Morishita Y, Watabe T, Niwa H, Miyazono K. Activin-nodal signaling is involved in propagation of mouse embryonic stem cells. Journal of Cell Sciences, 2007, 120:55-65.
[23] Kohlhase J, Heinrich M, Liebers M, Frohlich Archangelo L, Reardon W, Kispert A. Cloning and expression analysis of SALL4, the murine homologue of the gene mutated in Okihiro syndrome. Cytogenetic and Genome Research, 2002, 98:274-277.
[24] Wu Q, Chen X, Zhang J, Loh Y H, Low T Y, Zhang W W, Zhang W S, Sze S K, Lim B, Ng H H. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. The Journal of Biological Chemistry, 2006, 281:24090-24094.
[25] Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, Wong F, Yates A, Tomlinson S R, Chambers I. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell, 2012, 11:477-490.
[26] Yang F, Zhang J L, Liu Y J, Cheng D, Wang H Y. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. International Journal of Biochemisty & Cell Biology, 2015, 59:142-152. |