[1]Mew T W. Current status and future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 1987, 25: 359-382.[2]Nino-Liu D O, Ronald P C, Bogdanove A. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Molecular Plant Pathology, 2006, 7: 303-324.[3]章 琦. 水稻白叶枯病抗性基因鉴定进展及其利用. 中国水稻科学, 2005, 19(5): 453-459.Zhang Q. Highlights in identification and application of resistance genes to bacterial blight. Chinese Journal of Rice Science, 2005, 19(5): 453-459. (in Chinese)[4]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the USA, 1998, 95: 1663-1668.[5]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsen T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by rice disease resistance gene Xa21. Science, 1995, 270: 1772-1804.[6]Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.[7]Iyer A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 2004, 17(12): 1348-1354.[8]Chu Z H, Yuan M, Ge X J, Yuan B, Xu C G, Li X H, Fu B Y, Li Z K, Bennetzen J L, Zhang Q F, Wang S P. Promoter mutations of an essential gene for pollen development results in disease resistance in rice. Genes and Development, 2006, 20: 1250-1255.[9]Liu Q, Yuan M, Zhou Y, Li X H, Xiao J H, Wang S P. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant, Cell and Environment, 2011, 34: 1958-1969.[10]Yang B, Sugio A, White F F. Os8N3 is a host disease susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 10503-10508.[11]Greene E A, Codomo C A, Taylor N E, Henikoff J G, Till B J, Reynolds S H, Enns L C, Burtner C, Johnson J E, Odden A R, Comai L, Henikoff S. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics, 2003, 164(2): 731-740.[12]Menda N, Semel Y, Peled D, Eshed Y, Zamir D. In silico screening of a saturated mutation library of tomato. The Plant Journal, 2004, 38(5): 861-872.[13]Ray S K, Rajeshwari R, Sonti R V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Molecular Plant-Microbe Interactions, 2000, 13: 394-401.[14]Zhu Y, Zhao H F, Ren G D, Yu X F, Cao S Q, Kuai B K. Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis. Cell Research, 2005, 15(2): 133-140.[15]Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F ,Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics, 2006, 112: 455-461.[16]Patrick R, Sabine R, Tina S, Janett E, Sebastian S, Jens B, Wang S P, Thomas L. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. Oryzae. New Phytologist, 2010, 187(4): 1048-1057.[17]White F F, Yang B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiology, 2009, 150: 1677-1686.[18]Jens B, Heidi S, Schornack S, Angelika L, Simone H, Sabine K, Thomas L, Anja N, Ulla B. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326: 1509-1512.[19]Yuan M, Chu Z, Li X, Xu C, Wang S P. Pathogen-induced expressional loss of function is key factor of race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiology, 2009, 50: 947-955. [20]Yuan M, Chu Z, Li X, Xu C, Wang S P. The bacterial pathogen xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. The Plant Cell, 2010, 22: 3164-3176.[21]Antony G, Zhou J H, Sheng H, Li T, Liu B, White F F, Yang B. xa13 recessive resistance to bacterial blight is defeated by the induction of disease susceptibility gene Os11N3. The Plant Cell, 2010, 22(11): 3864-3876.[22]Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antaony G, White F F, Somerville S, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.[23]Wu J L, Wu C J, Lei C L, Baraodidan M, Bordeos A, Madamba R S, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat V J, Bruskiewich R, Wang G L, Leachi J, Khush G, Leung H. Chmical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Molecular Biology, 2005, 59: 85-97.[24]Lin X H, Zhang D P, Xie Y F, Gao H P, Zhang Q. Identification and mapping of a new gne for bacterial blight resistance in rice markers. Phytopathology, 1996, 86: 1156-1159.[25]Misteli T, Spector D L. Applications of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnology, 1997, 15(10): 961-964.[26]Yeh E, Gustafson K, Boulianne G L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proceedings of the National Academy of Sciences of the USA, 1995, 92: 7036-7040.[27]Jen S, Seongbin H, Yasuo N, Hirokazu K, David W. Green-fluorescent protein as a new vital marker in plant cells. The Plant Journal, 1995, 8(5): 777-784.[28]殷晓敏, 徐碧玉, 郑 雯, 曾会才, 马蔚红, 王家保, 李焕苓, 金志强. 香蕉枯萎病菌侵染香蕉根系的组织学过程. 植物病理学报, 2011, 41(6): 570-575.Yin X M, Xu B Y, Zheng W, Zeng H C, Ma W H, Wang J B, Li H L, Jin Z Q. Histological observation of banana root infected by Fusarium oxysporum f. sp. cubense. Acta Phytopathologica Sinica, 2011, 41(6): 570-575. (in Chinese) |