Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (2): 372-380    DOI: 10.1016/S2095-3119(18)61957-4
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
GsMAPK4, a positive regulator of soybean tolerance to salinity stress
QIU You-wen, FENG Zhe, FU Ming-ming, YUAN Xiao-han, LUO Chao-chao, YU Yan-bo, FENG Yanzhong, WEI Qi, LI Feng-lan
Download:  PDF (2738KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Salt stress is one of the major factors affecting plant growth and yield in soybean under saline soil condition.  Despite many studies on salinity tolerance of soybean during the past few decades, the detailed signaling pathways and the signaling molecules for salinity tolerance regulation have not been clarified.  In this study, a proteomic technology based on two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins responsible for salinity tolerance in soybean plant.  Real-time quantitative PCR (qRT-PCR) and Western blotting (WB) were used to verify the results of 2-DE/MS.  Based on the results of 2-DE and MS, we selected glucosyltransferase (GsGT4), 4-coumarate, coenzyme A ligase (Gs4CL1), mitogen-activated protein kinase 4 (GsMAPK4), dehydration responsive element binding protein (GsDREB1), and soybean cold-regulated gene (GsSRC1) in the salinity tolerant soybean variety, and GsMAPK4 for subsequent research.  We transformed soybean plants with mitogen-activated-protein kinase 4 (GsMAPK4) and screened the resulting transgenics soybean plants using PCR and WB, which confirmed the expression of GsMAPK4 in transgenic soybean.  GsMAPK4-overexpressed transgenic plants showed significantly increased tolerance to salt stress, suggesting that GsMAPK4 played a pivotal role in salinity tolerance.  Our research will provide new insights for better understanding the salinity tolerance regulation at molecular level.
Keywords:  soybean        salinity tolerance        two-dimensional gel electrophoresis        GsMAPK4   
Received: 21 December 2017   Accepted:
Fund: This research was supported by the Science and Technology Research Project of Department of Education of Heilongjiang Province, China (12541047).
Corresponding Authors:  Correspondence LI Feng-lan, Tel: +86-451-55190866, Fax: +86-451-55190413, E-mail: lifenglan@neau.edu.cn   
About author:  * These authors contributed equally to this study.

Cite this article: 

QIU You-wen, FENG Zhe, FU Ming-ming, YUAN Xiao-han, LUO Chao-chao, YU Yan-bo, FENG Yanzhong, WEI Qi, LI Feng-lan. 2019. GsMAPK4, a positive regulator of soybean tolerance to salinity stress. Journal of Integrative Agriculture, 18(2): 372-380.

Agrawal G K, Rakwal R, Iwahashi H. 2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications, 294, 1009–1016.
Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J. 2004. Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. The Plant Journal, 40, 512–522.
Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P. 2009. Insights into corn genes derived from large-scale cDNA sequencing. Plant Molecular Biology, 69, 179–194.
Ashraf M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84–93.
Bartels S, Gonzalez B M, Lang D, Ulm R. 2010. Emerging functions for plant MAP kinase phosphatases. Trends in Plant Science, 15, 322–329.
Bergmann D C, Lukowitz W, Somerville C R. 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science, 304, 1494–1497.
Blanco F A, Zanetti M E, Casalongue C A, Daleo G R. 2006. Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiology and Biochemistry, 44, 315–322.
Bogre L, Meskiene I, Heberle-Bors E, Hirt H. 2000. Stressing the role of MAP kinases in mitogenic stimulation. Plant Molecular Biology, 43, 705–718.
Castells E, Puigdomenech P, Casacuberta J M. 2006. Regulation of the kinase activity of the MIK GCK-like MAP4K by alternative splicing. Plant Molecular Biology, 61, 747–756.
Chae M J, Lee J S, Nam M H, Cho K, Hong J Y. 2007. A rice dehydrationinducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Molecular Biology, 63, 151–169.
Champion A, Picaud A, Henry Y. 2004. Reassessing the MAP3K and MAP4K relationships. Trends in Plant Science, 9, 123–129.
Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. 2009. Cold-induced modulation and functional analyses of the DRE-binding transcriptio n factor gene, GmDREB3, in soybeanbean (Glycine max L.). Journal of Experimental Botany, 60, 121–135.
Cheng L B, Gao X, Li S Y, Shi M J, Javeed H, Jing X M, Yang G X, He G Y. 2010. Proteomic analysis of soybean [glycine max (L.) meer.] seeds during imbibition at chilling temperature. Molecular Breeding, 1, 1–17.
Colcombe J, Hirt H. 2008. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochemical Journal, 413, 217–226.
Damerval C, De V D, Zivy M, Thiellement H. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis, 7, 52–54.
Ding H, Tan M, Zhang C, Zhang Z, Zhang A, Kang Y. 2009. Hexavalent chromium (VI) stress induces mitogen-activated protein kinase activation mediated by distinct signal molecules in roots of Zea mays L. Environmental and Experimental Botany, 67, 328–334.
Ding H, Zhang A, Wang J, Lu R, Zhang H. 2009. Identity of an ABA activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: Partial purification, identification and characterization. Planta, 230, 239–251.
Dombrowski J E, Hind S R, Martin R C, Stratmann J W. 2011. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686–693.
Droste A, Pasquali G, Bodanese-Zanettini M H. 2002. Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica, 127, 367–376.
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124, 509–525.
Ghawana S, Kumar S, Ahuja P S. 2010. Early low-temperature responsive mitogen activated protein kinases RaMPK1 and RaMPK2 from Rheum australe D. Don respond differentially to diverse stresses. Molecular Biology Reports, 37, 933–938.
Gu L, Liu Y, Zong X, Liu L, Li D P, Li D Q. 2010. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Molecular Biology Reports, 37, 4067–4073.
Guan R G, Qu Y, Guo Y, Yu L L, Liu Y, Jiang J H, Chen J G, Ren Y L, Liu G Y, Lei T L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 80, 937–950.
Hrabak E M, Chan C W, Gribskov M. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 132, 666–680.
Hu G, Koh J, Yoo M J, Grupp K, Chen S, Wendel J F. 2013. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytologist, 200, 570–582.
Huang J G, Gao X J, Li Q Z, Lu L M, Liu R, Luo C C, Wang J L, Qiao B, Jin X. 2012. Proteomic analysis of the nuclear phosphorylated proteins in bovine mammary epithelial cells treated with estrogen. In Vitro Cellular & Developmental Biology (Animal), 48, 449–457.
Huang Y L, Zhao F, Luo C C, Zhang X, Si Y, Sun Z, Zhang L, Li Q Z, Gao X J. 2013. SOCS3-Mediated blockade reveals major contribution of JAK2/STAT5 signaling pathway to lactation and proliferation of dairy cow mammary epithelial cells in vitro. Molecules, 18, 12987–13002.
Huang Z, Zhao L, Chen D. 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem Artichoke plantlets. PLoS ONE, 8, 80–85.
Irar S, Brini F, Goday A, Masmoudi K, Pagès M. 2010. Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) - A wider perspective of the proteome. Journal of Proteomics, 9, 1707–1721.
Irar S, Brini F, Masmoudi K, Pagès M. 2014. Combination of 2DE and LC for plant proteomics analysis. Methods in Molecular Biology, 1072, 131–140.
Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. 2013. The Salt Overly Sensitive (SOS) pathway: Established and emerging roles. Molecular Plant, 6, 75–86.
Jiang X, Leidi E O, Pardo J M. 2010. How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signaling and Behavior, 5, 792–795.
Jin X, Wang L, He L, Feng W, Wang X. 2016. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. Science China (Life Sciences), 2, 154–163.
Kacem N S, Mauro S, Muhovski Y, Delporte F, Renaut J, Djekoun A, Watillon B. 2016. Diagonal two-dimensional electrophoresis (D-2DE): A new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Molecular Biology Reports, 9, 897–909.
Lampard G R. 2009. The missing link: Arabidopsis SPCH is a MAPK specificity factor that controls entry into the stomatal lineage. Plant Signaling & Behavior, 4, 425–427.
Lau B Y, Deb-Choudhury S, Morton J D, Clerens S, Dyer J M, Ramli U S. 2015. Method developments to extract proteins from oil palm chromoplast for proteomic analysis. SpringerPlus, 4, 791.
Li Z B, Li C F, Jia L J, Zhang Y S. 2014. Molecular cloning and functional characterization of two divergent 4-coumarate: coenzyme a ligases from kudzu (Pueraria lobata). Biological and Pharmaceutical Bulletin, 37, 113–122.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(–Delta Delta C) method. Methods, 25, 402–408.
Lu L M, Li Q Z, Huang J G, Gao X J. 2013. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis. Molecules, 18, 263–275.
Ludwig A A, Romeis T, Jones J D. 2004. CDPK-mediated signaling pathways: Specificity and cross-talk. Journal of Experimental Botany, 55, 181–188.
Luo C C, Yin D Y, Gao X J, Li Q Z, Zhang L. 2013. Goat mammary gland expression of cecropin B to inhibit bacterial pathogens causing mastitis. Animal Biotechnology, 24, 66–78.
Ma H Y, Song L R, Huang Z G, Yang Y, Wang S, Wang Z K, Tong J H, Gu W H, Ma H, Xiao L. 2014. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics, 4, 40–57.
Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. 2016. Proteomic analyses provide novel insights into plant growth and ginsenoside biosynthesis in forest cultivated Panax ginseng (F. Ginseng). Frontiers in Plant Science, 7, 1.
Ma W J, Guo X, Liu J T, Liu R Y, Hu J W, Sun A G, Yu Y X, Lammi M J. 2011. Proteomic changes in articular cartilage of human endemic osteoarthritis in China. Proteomics, 11, 2881–2890.
Manavalan L P, Guttikonda S K, Tran L P, Nguyen H T. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant & Cell Physlology, 50, 1260–1276.
Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S. 2011. Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. Journal of Proteome Research, 10, 5416–5432.
Munns R. 2005. Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Rabilloud T, Chevallet M, Luche S, Lelong C. 2010. Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of Proteomics, 11, 2064–2077.
Rastogi S, Kumar R, Chanotiya C S, Shanker K, Gupta M M, Nagegowda D A, Shasany A K. 2013. 4-Coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant & Cell Physiology, 54, 1238–1252.
Saballos A, Sattler S E, Sanchez E, Foster T P, Xin Z, Kang C H, Pedersen J F, Brown W V. 2012. Brown midrib2 (Bmr2) encodes the major 4-coumarate: coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). The Plant Journal, 70, 818–830.
Stasyk T, Morandell S, Bakry R, Feuerstein I, Huck C W, Stecher G, Bonn G K, Huber L A. 2005. Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining. Electrophoresis, 26, 2850–2854.
Teakle N L, Tyerman S D. 2010. Mechanisms of Cl– transport contributing to salt tolerance. Plant, Cell & Environment, 33, 566–589.
Vleesschauwer D, Yang Y, Cruz C V, Hofte M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology, 152, 2036–2052.
Wang N, Wu X, Ku L, Chen Y, Wang W. 2016. Evaluation of three protein-extraction methods for proteome analysis of maize leaf midrib, a compound tissue rich in sclerenchyma cells. Frontiers in Plant Science, 7, 856.
Wang X, Li Q, Jin X, Xiao G, Liu G, Liu N, Qin Y. 2015.Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. Journal of Proteomics, 114c, 16–27.
Weber R L M, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, Brito G G, Rechenmacher C, Bertagnolli P F, Campos M, Amorim R M S, Aparecida M, Margis B R, Grossi-de-Sa M F, Bodanese-Zanettini M H. 2014. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybeanbean. BMC Plant Biology, 14, 343.
Weber R M, Körbes A P, Baldasso D A, Callegari-Jacques S M, Bodanese-Zanettini M H, Droste A. 2007. Beneficial effect of abscisic acid on soybean somatic embryo maturation and conversion into plants. Plant Cell Culture Micropropagation, 3, 1–9.
Yan K, Chen P, Shao H B. 2012. Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. Journal of Agronomy and Crop Science, 198, 218–226.
Yan S P, Tang Z C, Su W, Sun W N. 2005. Proteornic analysis of salt stress-responsive proteins in rice root. Proteomics, 5, 235–244.
Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y M. 2012. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS ONE, 7, e33838.
Yang L, Ji W, Zhu Y M, Gao P, Li Y, Cai H, Bai X, Guo D J. 2010. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. Journal of Experimental Botany, 61, 2519–2533.
Yu C, Zhang X F, Li F, Cai Q Y, Yan X, Li S B, Zhu Y L. 2017. Anatomical observation and proteomics analysis of root tips of wild and cultivated soybeans. International Jouranl of Agriculture & Biology, 19, 849–856.
Yuan Y, Yu S L, Jun Y J, Zhan Z L, Li M H, Liu G M, Wang X M, Huang L Q. 2014. Predicting the function of 4-ccoumarate: CoA ligase (LJ4CL1) in lonicera japonica. International Journal of Molecular Sciences, 15, 2386–2399.
Zhou L, Wang C, Liu R F, Han Q, Vandeleur R K, Du J, Steven Tyerman S, Shou H X. 2014. Constitutive overexpression of soybeanbean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance. BMC Plant Biology, 14, 181.
 
[1] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[2] XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1797-1808.

[3] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[4] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[5] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[6] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[7] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
[8] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[9] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[10] HUI Fang, XIE Zi-wen, LI Hai-gang, GUO Yan, LI Bao-guo, LIU Yun-ling, MA Yun-tao. Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1606-1619.
[11] TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(4): 933-946.
[12] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[13] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[14] OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3524-3539.
[15] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
No Suggested Reading articles found!