Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (4): 613-625.doi: 10.3864/j.issn.0578-1752.2018.04.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Fine Mapping of an Early Senescent Leaf Mutant es5 in Oryza sativa L.

WANG BeiFang1, CHEN YuYu1, ZHANG YingXin1, LIU QunEn1, SUN Bin1, XIANG XiaoJiao1CAO YongRun1,2, CHENG ShiHua1, CAO LiYong1

 
  

  1. 1China National Rice Research Institute/State Key Laboratory of Rice Biology/Key Laboratory for Zhejiang Super Rice Research, Fuyang 311401, Zhejiang; 2Agronomic Institute of Henan Agricultural University, Zhengzhou 450002
  • Received:2017-09-07 Online:2018-02-16 Published:2018-02-16

Abstract: 【Objective】In this study genetic analysis and gene mapping of es5, a mutant with early senescent leaf in rice, were conducted to explore the molecular mechanism of rice leaf senescence.【Method】 es5 was isolated from the progeny of japonica rice cv. Jiahe212 treated by ethyl methane sulfonate (EMS). F2 population was derived from the cross between es5 and Zhonghui8015. The phenotypes of the F1 and the segregation ratio of the F2 were investigated in Hangzhou and Hainan separately. The recessive individuals in F2 were used to locate the gene by the map cloning method. The SOD activity, MDA content, soluble protein content, chlorophyll content, the net photosynthetic rate, the histochemical analysis and the expression of senescence-related genes were analyzed for es5 and Jiahe212 leaves at heading stage. Several main agronomic traits of es5 and Jiahe212 were analyzed under field conditions at maturation stage in Hangzhou.【Result】There was no difference between Jiahe212 and es5 before 4-leaf-stage. Leaf senescence in es5 occurred at 4-leaf-stage. The etiolated area of the rice leaf increased gradually with the growth and development. At elongation stage, the middle and lower leaves showed serious aging. Compared with the Jiahe212, Chl a, Chl b, carotenoid content and photosynthetic capacity of es5 significantly decreased and the plant height, the number of productive panicles per plant, the number of spikelets per panicle, seed setting rate and 1 000-grain weight also significantly reduced. The results of Evans blue and DAB staining assay indicated that there were more dead cells and H2O2 in leaves of es5. At 7 days to 21 days and heading, the SOD activities increased significantly in es5, MDA content increased significantly in 21days after heading, while the soluble protein content significantly decreased at 7 days and 21 days after heading. Dissolved cytoplasm, abnormal chloroplast structure, dissolved chloroplast membrane, blurred base, loose lamellar lamellae, abnormal thylakoid development and more starches grains and osmiophilic granules were observed in the senescent leaf region of es5 by Transmission Electronic Microscope (TEM). qRT-PCR analysis showed that senescence-associated genes Osh36, Osh69, OsI85, RCCR1 were up regulated significantly in es5. Especially, the expression of Osh69 and OsI85, two marker genes about aging, were up regulated 12.7 and 36.6 times respectively. SGR, a gene about degradation of chlorophyll, was up regulated significantly at the same time. Genetic analysis suggested that the phenotype of es5 was controlled by single recessive nuclear gene, and ES5 was fine mapped in a 52.7 kb interval including 8 open reading frames between BF-10 and RM3664 on chromosome 5 by map-based cloning strategy.【Conclusion】In this study several agricultural traits significantly in es5 for the leaf senescence ES5 was located in a 52.7 kb range between BF-10 and RM3664 by map-based cloning strategy.

Key words: Oryza sativa L., early senescence, es5, map-based cloning, fine mapping

[1]    Yoshida S. Molecular regulation of leaf senescence. Current Opinion in Plant Biology, 2003, 6(1): 79-84.
[2]    Wu Z M, Zhang X, He B, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology, 2007, 145(1): 29-40.
[3]    Seo P J, Xiang F N, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiology, 2009, 151(1): 275-289.
[4]    Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 2003. 54(391): 2285-2292.
[5]    Jiang C Z, Rodermel S R, Shibles R M. Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiology, 1993, 101(1): 105-112.
[6]    Liu L, Zhou Y, Szczerba M W, Li X H, Lin Y J. Identification and application of a rice senescence-associated promoter. Plant Physiology, 2010, 153(3): 1239.
[7]    Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag leaves. Plant Molecular Biology, 2008, 67(1/2): 37.
[8]    Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S,Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. The Plant Cell, 2007, 19(4): 1362-1375.
[9]    Jiao B B, Wang J J, Zhu X D, ZENG L J, LI Q, HE Z H.  A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Molecular Plant, 2012, 5(1): 205.
[10]   Tang Y Y, Li M R, Chen Y P, Wu P Z, Wu G J, Jiang H W. Knockdown of Os PAO, and Os RCCR1, cause different plant death phenotypes in rice. Journal of Plant Physiology, 2011, 168(16): 1952-1959.
[11]   Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. The Plant Journal, 2013, 74(4): 652-662.
[12]   Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an α/β hydrolase‐fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant Journal for Cell & Molecular Biology, 2009, 59(6): 940-952.
[13]   Lee R H, Lin M C, Chen S C G. A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Molecular Biology, 2004, 55(2): 281-295.
[14]   Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. The Plant Journal, 2007, 52(2): 197-209.
[15]   Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. The Plant Cell Online, 2007, 19(5): 1649-1664.
[16]   Wu H B, Wang B, Chen Y L, Liu Y G, Chen L T. Characterization and fine mapping of the rice premature senescence mutant ospse1. theoretical and Applied Genetics, 2013, 126(7): 1897.
[17]   Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. Plos One, 2014, 9(4): e94210.
[18]   孙玉莹. 水稻叶片早衰基因PSL2的图位克隆及功能初步分析[D]. 北京: 中国农业科学院, 2013.
Sun Y Y. Map-based cloning and basic functional analysis of presenescing leaf gene PSL2 in rice (Orzya sativa L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[19]   Kong Z, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiology, 2006, 141(4): 1376-1388.
[20]   Chen Y, Xu Y Y, Luo W, Li W X, Chen N, Zhang D J, Chong K. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiology, 2013, 163(4): 1673.
[21]   Qiao Y L, Jiang W Z, Lee J H, Park M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1(AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa L.). New Phytologist, 2010, 185(1): 258-274.
[22]   Wang S, Lei C L, Wang J L, Ma J, Tang S, Wang C L, Zhao K J, Tian P, Zhang H, Qi C Y, Cheng Z J, Zhang X, Guo X P, Liu L L, Wu C Y, Wan J M. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. Journal of Experimental Botany, 2017, 68(5): 899-913.
[23]   Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes & Genetic Systems, 2012, 87(3): 169.
[24]   Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. Journal of Integrative Plant Biology, 2016, 58(1): 12.
[25]   Lin Y H, Tan L B, Zhao L, Sun X Y, Sun C Q. RSL3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. Journal of Integrative Plant Biology, 2016, 58(12): 971-982.
[26]   Ansari M I, Lee R H, Chen S C G. A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): Pyruvate transaminase is upregulated during rice leaf senescence. Physiologia Plantarum, 2005,123(1): 1-8.
[27] Bi Z Z, Zhang Y X, Wu W X, Zhan X D, Yu N, Xu T T, Liu Q E, Li Z, Shen X H, Chen D B, Cheng S H, Cao L Y. Es7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Plant Science An International Journal of Experimental Plant Biology, 2017, 259: 24.
[28]   Sun L T, Wang Y H, Liu L L, Wang C M, Gan T, Zhang Z Y, Wang Y L, Wang D, Niu M, Long W H, Li X H, Zheng M, Jiang L, Wan J M. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Scientific Reports, 2017, 7: 41846.
[29]   王兆海. 水稻类病变相关基因SPL29的克隆和功能研究[D]. 武汉: 武汉大学, 2014.
Wang Z H. Cloning and functional analysis of the rice lesion-mimic associated gene SPL29[D]. Wuhan: Wuhan University, 2014. (in Chinese)
[30]   Wang J, Wu S, Zhou Y, Zhou L H, Xu J F, Jing H, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chinese Science Bulletin, 2006, 51(24): 2986-2992.
[31]   肖锐. 两个水稻早衰突变体的遗传分析与基因定位[D]. 雅安: 四川农业大学, 2012.
Xiao R. Genetic Analysis and Gene Mapping of two early senescence Mutants in Rice[D].Yaan: Sichuan Agricultural University, 2012. (in Chinese)
[32]   孙惠敏, 潘刚, 潘晓华, 程方民, 黄福灯, 李保同, 张春娇, 毛节景, 赵晨晨. 水稻早衰突变体lst的生理分析与基因定位. 核农学报, 2014, 28(3): 404-411.
Sun H M, Pan G, Pan X H, Cheng F M, Huang F D, Li B T, Zhang C J, Mao J J, Zhao C C. Physiological analysis and gene mapping of rice premature mutant lst. Journal of Nuclear Agricultural Sciences, 2014, 28(3): 404-411. (in Chinese)
[33]   桑贤春, 徐芳芳, 朱小燕, 邢亚迪, 何沛龙, 张长伟, 杨正林, 何光华. 水稻早衰突变体esl5的鉴定及其基因精细定位. 作物学报, 2014, 40(7): 1182-1189.
Sang X C, Xu F F, Zhu X Y, Xing Y D, He P L, Zhang C W, Yang Z L, He G H. Identification and gene fine mapping of early senescent leaf mutant esl5 in Oryza sativa. Acta Agronomica Sinica, 2014, 40(7): 1182-1189. (in Chinese)
[34]   徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华. 水稻早衰突变体esl2 的遗传分析及基因定位. 作物学报, 2012. 38(8): 1347-1353.
Xu F F, Sang X C, Ren D Y, Tang Y Q, Hu H W, Yang Z L, Zhao F M, He G H. Genetic analysis and gene mapping of early senescence leaf mutant esl2 in rice. Acta Agronomica Sinica, 2012, 38(8): 1347-1353. (in Chinese)
[35]   Deng L C, Qin P, Liu Z, Wang G L, Chen W L, Tong J H, Xiao L T, Tu B, Sun Y T, Yan W, He H, Tan J, Chen X W, Wang Y P, Li S G, Ma B T. Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiology Biochemistry, 2017, 111: 50-58.
[36]   Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Gong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.). Chinese Science Bulletin, 2010, 55(23): 2517-2521.
[37]   Li F Z, Hu G C, Fu Y P, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48(4): 738-746.
[38]   Yan W Y, Ye S H, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D l, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Genet Genomics, 2010, 37: 47-55.
[39]   杨波, 夏敏, 张孝波, 王晓雯, 朱小燕, 何沛龙, 何光华, 桑贤春. 水稻早衰突变体esl6的鉴定与基因定位. 作物学报, 2016, 42(7):976-983.
Yang B, Xia M, Zhang X B, Wang X W, Zhu X Y, He P L, He G H, Sang X C. Identification and gene mapping of an early senescent leaf mutant esl6 in Oryza sativa L.. Acta Agronomica Sinica, 2016, 42(7): 976-983. (in Chinese)
[40]   孙焕明. 水稻苍白叶突变体pgl3(t)的遗传分析和基因定位[D]. 扬州: 扬州大学, 2008.
Sun H M. Genetic analysis and fine mapping of pgl3(t)mutant in rice[D]. Yangzhou: Yangzhou University, 2008. (in Chinese)
[41]   冷语佳. 水稻早衰基因ES10的遗传分析与基因定位[D]. 北京: 中国农业科学院, 2013.
Leng Y J. Genetic analysis and fine mapping of ES10 in rice (Oryza sativa L.) [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[42]   杜青, 方立魁, 桑贤春, 凌英华, 李云峰, 杨正林, 何光华, 赵芳 明. 水稻叶尖早衰突变体lad的形态、生理分析与基因定位. 作物学报, 2012, 38(1): 168-173.
Du Q, Fang L K, sang X C, Ling Y H, Li Y F, Yang Z L, He G H, Zhao F M. Analysis of phenotype and physiology of leaf apex dead mutant (lad) in rice and mapping of mutant gene. Acta agronomica sinica, 2012, 38(1): 168-173. (in Chinese)
[43]   Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi- Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology, 2013, 161(3): 1202-1216.
[44]   Pitakrattananukool S, Kawakatsu T, Anuntalabhochai S, TAKAIWA F. Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Bioscience Biotechnology & Biochemistry, 2012, 76(7): 1296-1302.
[45]   苗润隆, 蒋钰东, 廖红香, 徐芳芳, 何光华, 杨正林, 赵芳明, 桑贤春. 水稻早衰突变esl3的鉴定与基因定位. 作物学报, 2013, 39(5): 862-867.
Miao R L, Jiang Y D, Liao H X, Xu F F, He G H, Yang Z L, Zhao F M, Sang X C. Identification and gene mapping of rice early senescent leaf (esl3) mutant. Acta Agronomica Sinica, 2013, 39(5): 862-867. (in Chinese)
[46]   Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J, Gao Z Y, Qian Q, Zeng D L. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L.. Chinese Science Bulletin, 2011, 56(23): 2437-2443.
[47]   Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. the Plant Journal, 1997, 11(6): 1187-1194.
[48]   Kong X, Li D. Hydrogen peroxide is not involved in HrpN from Erwinia amylovora-induced hypersensitive cell death in maize leaves. the Plant Cell Reports, 2011, 30(7): 1273-1279.
[49]   Li Y, Gao Y, Xu X, Shen Q, Guo s. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany, 2009, 60(8): 2351.
[50]   Schippers J H, Schmidt R, Wagstaff C, Jing H C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiology, 2015, 169(2): 914.
[51]   Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiology, 1949, 24(1): 1-15.
[52]   Porra R J, SCHAFER W, CMIEL E, KATHEDER I, SCHEER H. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen, Aspects of internalization. FEBS Journal, 2010, 219(1/2): 671-679.
[53]   李合生. 植物生理生化实验原理和技术. 第一版. 北京: 高等教育出版社, 2000: 184-261.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. The front page. Beijing: Higher Education Press, 2000: 184-261. (in Chinese)
[54]   Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 1985, 5(2): 69-76.
[55]   Lee R H, Wang C H, Huang L T, Chen S C g. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. Journal of Experimental Botany, 2001, 52(358): 1117.
[56]   Xu Y, Gianfagna T, Huang B R. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany, 2010, 61(12): 3273.
[57]   吴新新. 激素相关的糖基转移酶基因克隆及转基因水稻培育[D]. 济南: 山东大学, 2014.
Wu X X. Gene cloning of glucosyltransferases of plant hormones and cultivation of transgenic rice[D]. Jinan: Shandong university, 2014. (in Chinese)
[58]   段俊, 梁承邺, 黄毓文. 杂交水稻开花结实期间叶片衰老. 植物生理学报, 1997, 2(2): 139-144.
Duan J, Liang C Y, Huang Y W. Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Plant Physiology Journal, 1997, 2(2): 139-144. (in Chinese)
[1] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[2] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[3] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
[4] YU YanFang, LIU Xi, TIAN YunLu, LIU ShiJia, CHEN LiangMing, ZHU JianPing, WANG YunLong, JIANG Ling, ZHANG WenWei, WANG YiHua, WAN JianMin. Phenotypic Analysis and Gene Mapping of a Floury and Shrunken Endosperm Mutant fse3 in Rice [J]. Scientia Agricultura Sinica, 2018, 51(11): 2023-2037.
[5] WANG Guo-jiao, WANG Jia-yu, MA Dian-rong, MIAO Wei, ZHAO Ming-hui, CHEN Wen-fu. Responses of Antioxidant System to Cold Water Stress in Weedy and Cultivated Rice with Different Chilling Sensitivity [J]. Scientia Agricultura Sinica, 2015, 48(8): 1660-1668.
[6] LEI Wei, WEN Jian-cheng, PU Shi-huang, WANG Chang-jiang1, LIU Hua-ping, SUN Chao-hua, SU Jia-xiu, LI Zhen, XU Jin, TAN Ya-ling, JIN Shou-lin, TAN Xue-lin. Female Gametophyte Genotype Selection and Its Progeny Phenotypic Genetic Differentiation in Rice at Different Altitude Condition [J]. Scientia Agricultura Sinica, 2015, 48(7): 1249-1261.
[7] HUANG Jun-bao, HE Yong-ming, ZENG Xiao-chun, XIANG Miao-lian, FU Yong-qi. Changes of JA Levels in Floral Organs and Expression Analysis of JA Signaling Genes in Lodicules Before Floret Opening in Rice [J]. Scientia Agricultura Sinica, 2015, 48(6): 1219-1227.
[8] WANG Ya-qin, SHI Jun-qiong, ZHANG Ting, LI Yan, ZHANG Tian-quan, ZHANG Xiao-long, SANG Xian-chun, LING Ying-hua, HE Guang-hua. Characterization and Candidate Gene Analysis of Yellow-Green Leaf Mutant ygl13 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2015, 48(21): 4197-4208.
[9] LIU Chen, KONG Wei-yi, YOU Shi-min, ZHONG Xiu-juan, JIANG Ling, ZHAO Zhi-gang, WAN Jian-min. Genetic Analysis and Fine Mapping of a Novel Rolled Leaf Gene in Rice [J]. Scientia Agricultura Sinica, 2015, 48(13): 2487-2496.
[10] HU Ning, YAO Ke-min, YUAN Qian-hua, JIA Shi-rong, HE Mei-dan, JIANG Xiao-dong, XU Li-xin, HU Ji-chao, PEI Xin-wu. The Maximum Threshold Distances of Rice Gene Flow and Its Temporal and Spatial Distribution in the Hainan Crop Winter-Season Multiplication Region of China [J]. Scientia Agricultura Sinica, 2014, 47(23): 4551-4562.
[11] ZHAO Chun-De-1, 2 , ZHANG Ying-Xin-1, 2 , LIU Qun-恩1, 2 , YU Ning-1, 2 , CHENG Shi-Hua-1, 2 , CAO Li-Yong-1, 2 . Fine Mapping of an Early Senescence Gene in Rice [J]. Scientia Agricultura Sinica, 2014, 47(11): 2069-2077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!