Silage serves as the indispensable diet of ruminants, the increasing mechanism of α-tocopherol during silage making is unclear. Rice straw lacks chlorophyll after harvesting the grain, this can eliminate the impact of tocopherols formed by the breakdown of chlorophyll. Here, we explored the α-tocopherol source, its influencing factor, and its relationship with dominant lactic acid bacteria in rice straw silage treated without or with different additives (sodium benzoate, Lactobacillus plantarum, cell wall degrading enzymes, the combination of L. plantarum and cell wall degrading enzymes) and vacuum times (5, 8, 11, and 14 s) after ensiling for 42 d. We found that the pathogenic Klebsiella was traced as the source of increased α-tocopherol in rice straw silage. The residue air in the silo, pH value, and additive variety had impacts on Klebsiella activity, which was strongly active at levels of residue air in the silo and pH that were high. As an acidic niche creator, L. plantarum was more effective than sodium benzoate in restraining Klebsiella. Despite having a low acidity tolerance, Klebsiella was still present in rice straw silage treated with L. plantarum. The relationship between Klebsiella and L. plantarum was that Klebsiella could afford α-tocopherol to the multiplication of L. plantarum and residue capsular polysaccharide protected Klebsiella from escaping the extinction in rice straw silage.
Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat (Triticum aestivum L.)–maize (Zea mays L.) (W–M) rotation is the dominant planting pattern in the Huang-Huai-Hai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems (wheat–peanut (Arachis hypogaea L.) (W–P) rotation and wheat rotated with maize and peanut intercropping (W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms (SMs), and soil organic carbon (SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P (382.5–579.0 and 179.8–513.1 kg ha−1, respectively) compared with W–M. W–P
and W–M/P provided significantly higher net returns (58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions; the sensitivity index of potentially mineralizable carbon, microbial biomass carbon (MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely, potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.
Moderate leaf rolling can maintain leaf erectness, improve light transmittance in the population, and improve light energy utilization, thereby increasing rice yield. This study used ethyl methanesulfonate (EMS) to treat Yunjing 17 (YJ17) and obtained a semi-rolled leaf mutant that was named semi-rolled leaf 3 (srl3). We found that the rolled-leaf phenotype was due to the aberrant development of bulliform cells and the loss of sclerenchymatous cells. In addition, the shoot and root length of srl3 seedlings differed from the wild type. The srl3 mutant had significantly lower plant height and seed-setting rate but notably greater tiller number, panicle length, and primary branch number per panicle than the wild type. Genetic analysis showed that a single recessive nuclear gene defined the srl3 mutant, and it was precisely located in a 144-kb region between two insertion-deletion (InDel) markers, M8 and M19, on chromosome 2. In this region, no leaf-rolling-related genes have been reported previously. Thus, the study indicated that SRL3 is a novel leaf-rolling-related gene, and the results laid the foundation for the cloning and functional analysis of the SRL3 gene.