Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4186-4202    DOI: 10.1016/j.jia.2023.11.036
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Klebsiella as an α-tocopherol source facilitating Lactobacillus plantarum fermentation in rice straw silage

Cheng Zong1*, Lu Tang4, 5*, Tao Shao1, Yu Xiao1, Zhongyong Huang1, Wanqi Jiang1, Jiugang Zhu1, Zhihao Dong1, Mao Li3#, Qinhua Liu1, 2# 

1 Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China

2 Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan AgriculturalUniversity, Kunming 650201, China

3 Tropical Crops Genetic Resource Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

4 Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China

5 Chongqing Academy of Animal Sciences, Chongqing 402460, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

青贮饲料是反刍家畜重要的日粮成分和维生素E来源,发挥着促进反刍家畜健康养殖的作用。α-生育酚即维生素E,具有强抗氧化特性,可在青贮饲料中富集增加,但富集增加的机制尚未被研究透彻。本研究通过设置添加剂(空白对照、苯甲酸钠、植物乳杆菌、细胞壁降解酶、植物乳杆菌与细胞壁降解酶的组合)和控制青贮窖空气残留的抽真空时间(581114 s)双因素随机区组处理试验,利用单分子实时测序、产α-生育酚细菌显色鉴定和细菌共培养技术,探究了α-生育酚在水稻秸秆青贮饲料中增加机制结果表明细胞壁降解酶植物乳杆菌处理组在最短抽真空时间(5 s)的青贮饲料中具有高的α-生育酚含量 (P<0.05)。相反,苯甲酸钠处理组在较短抽真空时间(8 s)的青贮饲料具有最低的α-生育酚含量 (P<0.05)与长的抽真空时间(14 s)相比,最短抽真空时间(5 s)的青贮饲料具有高pH值,且产生α-生育酚的克雷伯菌的丰度较高 (P<0.05)。克雷伯菌的耐酸能力弱,但在植物乳杆菌处理的水稻秸秆青贮饲料中未被灭绝,且能增加青贮饲料的α-生育酚含量。将克雷伯菌与植物乳杆菌共培养时发现,α-生育酚促进了植物乳杆菌生长与克雷伯菌单独培养相比,其与植物乳杆菌共培养的培养液中,对克雷伯菌起保护作用的荚膜多糖含量仍保持高浓度水平综上所述,克雷伯菌是水稻秸秆青贮饲料α-生育酚增加的来源。克雷伯菌供应α-生育酚促进植物乳杆菌增殖的同时,高浓度水平的荚膜多糖保护其免于被产酸的植物乳杆菌灭亡。本研究初步探明了α-生育酚在水稻青贮饲料中富集增加的机制,为应用植物乳杆菌替代化学抑菌剂提高秸秆青贮饲料的卫生质量和抗氧化特性提供了科学依据和理论支撑



Abstract  

Silage serves as the indispensable diet of ruminants, the increasing mechanism of α-tocopherol during silage making is unclear.  Rice straw lacks chlorophyll after harvesting the grain, this can eliminate the impact of tocopherols formed by the breakdown of chlorophyll.  Here, we explored the α-tocopherol source, its influencing factor, and its relationship with dominant lactic acid bacteria in rice straw silage treated without or with different additives (sodium benzoate, Lactobacillus plantarum, cell wall degrading enzymes, the combination of L. plantarum and cell wall degrading enzymes) and vacuum times (5, 8, 11, and 14 s) after ensiling for 42 d.  We found that the pathogenic Klebsiella was traced as the source of increased α-tocopherol in rice straw silage.  The residue air in the silo, pH value, and additive variety had impacts on Klebsiella activity, which was strongly active at levels of residue air in the silo and pH that were high.  As an acidic niche creator, Lplantarum was more effective than sodium benzoate in restraining Klebsiella.  Despite having a low acidity tolerance, Klebsiella was still present in rice straw silage treated with L. plantarum.  The relationship between Klebsiella and L. plantarum was that Klebsiella could afford α-tocopherol to the multiplication of L. plantarum and residue capsular polysaccharide protected Klebsiella from escaping the extinction in rice straw silage.


Keywords:  α-tocopherol        Klebsiella        Lactobacillus plantarum        rice straw silage  
Received: 13 March 2023   Accepted: 07 October 2023
Fund: 

This work was supported by the Yunnan Revitalization Talents Support Plan, China (XDYC-QNRC-2023-0408), the Yunnan Revitalization Talents Support Plan, China (XDYC-CYCX-2022-0036), the Key Research and Development Projects of Hainan Province, China (ZDYF2022XDNY153), the Natural Science Foundation of Chongqing City, China (cstc2019jcyj-msxmX0066), and the Fundamental Research Funds or the Central Universities, China (KYYZ2023002).

About author:  Cheng Zong, E-mail: zongchengnj@163.com; Lu Tang, E-mail: 15281737065@163.com; #Correspondence Qinhua Liu, E-mail: liuqinhua@njau.edu.cn; Mao Li, E-mail: limaohn@163.com * These authors contributed equally to this study.

Cite this article: 

Cheng Zong, Lu Tang, Tao Shao, Yu Xiao, Zhongyong Huang, Wanqi Jiang, Jiugang Zhu, Zhihao Dong, Mao Li, Qinhua Liu. 2024. Klebsiella as an α-tocopherol source facilitating Lactobacillus plantarum fermentation in rice straw silage. Journal of Integrative Agriculture, 23(12): 4186-4202.

Anderson M J. 2017. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online2014, 1–15.

Bai J, Ding Z, Ke W, Xu D, Wang M, Huang W, Zhang Y, Liu F, Guo X. 2021. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts. Microbial Biotechnology14, 1171–1182.

Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Analytical Biochemistry54, 484.

de Campos T A, de Almeida F M, de Almeida A P C, Nakamura-Silva R, Oliveira-Silva M, de Sousa I F A, Cerdeira L, Lincopan N, Pappas G J, Jr Pitondo-Silva A. 2021. Multidrug-resistant (MDR) Klebsiella variicola strains isolated in a brazilian hospital belong to new clones. Frontiers in Microbiology12, 604031.

Cai Y, Benno Y, Ogawa M, Ohmomo S, Kumai S, Nakase T. 1998. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Applied and Environmental Microbiology64, 2982–2987.

Chaji M, Direkvandi E, Salem A Z M. 2019. Ensiling of Conocarpus erectus tree leaves with molasses, exogenous enzyme and Lactobacillus plantarum impacts on ruminal sheep biogases production and fermentation. Agroforestry Systems94, 1611–1623.

Chen D, Zheng M, Guo X, Chen X, Zhang Q, 2021. Altering bacterial community: A possible way of lactic acid bacteria inoculants reducing CO2 production and nutrient loss during fermentation. Bioresource Technology329, 124915.

Dewar W A, McDonald P, Whittenbury R. 1963. The hydrolysis of grass hemicelluloses during ensilage. Journal of the Science of Food and Agriculture14, 411–417.

Domenico P, Schwartz S, Cunha B A. 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infection and Immunity57, 3778–3782.

Dong C F, Cai Q S, Wang C L, Harada J, Nemoto K, Shen Y X. 2008. QTL Analysis for traits associated with feeding value of straw in rice (Oryza sativa L.). Rice Science15, 195–200.

Eun J S, Beauchemin K A, Hong S H, Bauer M W. 2006. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology131, 87–102.

Gala R, Mita G, Caretto S. 2005. Improving alpha-tocopherol production in plant cell cultures. Journal of Plant Physiology162, 782–784.

Georgantelis D, Ambrosiadis I, Katikou P, Blekas G, Georgakis S A. 2007. Effect of rosemary extract, chitosan and alpha-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 degrees C. Meat Science76, 172–181.

Guan H, Shuai Y, Ran Q, Yan Y, Wang X, Li D, Cai Y, Zhang X. 2020. The microbiome and metabolome of Napier grass silages prepared with screened lactic acid bacteria during ensiling and aerobic exposure. Animal Feed Science and Technology269, 114673.

Hertl J A, Schukken Y H, Welcome F L, Tauer L W, Grohn Y T. 2014. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. Journal of Dairy Science97, 1465–1480.

Jia T, Sun Z, Gao R, Yu Z. 2019. Lactic acid bacterial inoculant effects on the vitamin content of alfalfa and Chinese leymus silage. Asian-Australasian Journal of Animal Science32, 1873–1881.

Jia T, Yun Y, Yu Z. 2021. Propionic acid and sodium benzoate affected biogenic amine formation, microbial community, and quality of oat silage. Frontiers in Microbiology12, 750920.

Kalač P. 2012. Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review. Journal of Agrobiology29, 1–13.

Kanaya C A. 2007. β-carotene and α-tocopherol contents of forage rice plant (Oryza sativa L.) and silage making for fattening beef cattle. Japanese Journal of Grassland Science53, 167–171.

Kalaji H M, Dąbrowski P, Cetner M D, Samborska I A, Łukasik I, Brestic M, Zivcak M, Tomasz H, Mojski J, Kociel H, Panchal B M. 2016. A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition40, 1024–1034.

Knický M, Lingvall P. 2007. Ensiling of high wilted grass-clover mixture by use of different additives to improve quality. Acta Agriculturae ScandinavicaSection A- Animal Science54, 197–205.

Lan P, Jiang Y, Zhou J, Yu Y. 2021. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniaeJournal of Global Antimicrobial Resistance25, 26–34.

Li J, Yuan X, Desta S T, Dong Z, Mugabe W, Shao T. 2018. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sineseBioresource Technology257, 76–83.

Li P, You M, Du Z, Lu Y, Zuo C, Zhao M, Wang H, Yan X, Chen C. 2021. Effects of N fertilization during cultivation and Lactobacillus plantarum inoculation at ensiling on chemical composition and bacterial community of mulberry silage. Frontiers in Microbiology12, 735767.

Lin J C, Chang F Y, Fung C P, Xu J Z, Cheng H P, Wang J J, Huang L Y, Siu L K. 2004. High prevalence of phagocytic-resistant capsular serotypes of Klebsiella pneumoniae in liver abscess. Microbes and Infection6, 1191–1198.

Lindqvist H, Nadeau E, Jensen S K. 2012. Alpha-tocopherol and β-carotene in legume-grass mixtures as influenced by wilting, ensiling and type of silage additive. Grassland Forage Science67, 119–128.

Liu J X, Wang X Q, Shi Z Q, Ye H W. 2000. Nutritional evaluation of bamboo shoot shell and its effect as supplementary feed on performance of heifers offered ammoniated rice straw diets. Asian-Australasian Journal of Animal Science13, 1388–1393.

Liu Q, Zong C, Dong Z, Wu J, Zhu J, Li J, Zhang J, Shao T. 2020. Effects of cellulolytic lactic acid bacteria on the lignocellulose degradation, sugar profile and lactic acid fermentation of high-moisture alfalfa ensiled in low-temperature seasons. Cellulose27, 7955–7965.

Liu Q H, Dong Z H, Shao T. 2018. Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Animal Feed Science and Technology236, 29–38

Liu Q H, Shao T, Bai Y F. 2016. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Animal Feed Science and Technology221, 1–11.

Liu Q H, Yang F Y, Zhang J G, Shao T. 2014. Characteristics of Lactobacillus parafarraginis ZH1 and its role in improving the aerobic stability of silages. Journal of Applied Microbiology117, 405–416.

Liu S, Lai M, Lin Z. 1987. Spectrophotometric determination of vitamin e and its significance. Acta Nutrimenta Sinica4, 364–369.

Mengistu Y, Edwards C, Saunders J R. Continuous culture studies on the synthesis of capsular polysaccharide by Klebsiella pneumoniae K1. Journal of Applied Bacteriology76, 424–430.

Mosher J J, Bernberg E L, Shevchenko O, Kan J, Kaplan L A. 2013. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. Journal of Microbiological Methods95, 175–181.

Novamsky I, Eck R V, Schouwenburg C V, Walinga I. 1974. Total nitrogen determination in plant material by means of the indophenol-blue method. Netherlands Journal of Agricultural Science22, 3–5.

Oksanen J, Blanchet F G, Kindt R, Legendre P, Stevens H. 2013. Vegan: Community Ecology Package. R package version 2.0–10.

Playne M J, McDonald P. 1966. The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture17, 264–268.

Radhika V, Subramanian S, Natarajan K A. 2006. Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Research40, 3628–3636.

Rise M, Cojocaru M, Gottlieb H E, Goldschmidt E E. 1989. Accumulation of alpha-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiology89, 1028–1030.

Sahly H, Podschun R, Oelschlaeger T A, Greiwe M, Parolis H, Hasty D, Kekow J, Ullmann U, Ofek I, Sela S. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniaeInfection and Immunity68, 6744–6749.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution4, 406–425.

Santos W P, Salvati G G S, Silveira J M, Salvo P A R, Arthur B A V, Gritti V C, Oliveira K S, Ferraz Jr M V, Daniel J L P, Nussio L G. 2019. The effect of length of storage and sodium benzoate on the nutritive value of reconstituted sorghum grain silages for dairy cows. Journal of Dairy Science102, 9028–9038.

Sato S, Uegaki R, Kawamura J Y, Kimura T. 2018. Enhancement of α-tocopherol by ensiling in barley (Hordeum vulgare) and wheat (Triticum aestivum). Grassland Science64, 245–251.

Shaani Y, Zehavi T, Eyal S, Miron J, Mizrahi I. 2018. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME Journal12, 2446–2457.

Tani Y, Tsumura H. 2014. Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agricultural and Biological Chemistry53, 305–312.

Villa R, Rodriguez O L, Fenech C, Anika O C. 2020. Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields. Renewable and Sustainable Energy Reviews134, 110401.

Wang M, Zhang F, Zhang X, Yun Y, Wang L, Yu Z. 2021. Nutritional quality and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk, and their mixtures. Agriculture11, 1205.

Wang Y S, Shi W, Huang L T, Ding C L, Dai C C. 2016. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage. Animal Science Journal87, 525–535.

Wareth G, Neubauer H. 2021. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. Veterinary Research52, 16.

Xian Z, Wu J, Deng M, Wang M, Tian H, Liu D, Li Y, Liu G, Sun B, Guo Y. 2022. Effects of cellulase and Lactiplantibacillus plantarum on the fermentation parameters, nutrients, and bacterial community in Cassia alata silage. Frontiers in Microbiology13, 926065.

Xu D, Ding Z, Wang M, Bai J, Ke W, Zhang Y, Guo X. 2020. Characterization of the microbial community, metabolome and biotransformation of phenolic compounds of sainfoin (Onobrychis viciifolia) silage ensiled with or without inoculation of Lactobacillus plantarumBioresource Technology316, 123910.

Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. 2020. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households. Frontiers in Microbiology11, 1878.

Zhao J, Tao X, Wang S, Li J, Shao T. 2021. Effect of sorbic acid and dual-purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage. Journal of Applied Microbiology130, 1456–1465.

Zong C, Wu Q, Wu A, Chen S, Dong D, Zhao J, Shao T, Liu Q. 2021. Exploring the diversity mechanism of fatty acids and the loss mechanisms of polyunsaturated fatty acids and fat-soluble vitamins in alfalfa silage using different additives. Animal Feed Science and Technology280, 115044.

No related articles found!
No Suggested Reading articles found!