Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice (Oryza sativa) and Arabidopsis that play versatile roles in developmental processes and stress responses. In wheat (Triticum aestivum L.), we found nine genetic loci of tae-miR164 (tae-MIR164 a to i) producing two mature sequences that down-regulate the expression of three newly identified target genes of TaNACs (TaNAC1, TaNAC11, and TaNAC14) by the cleavage of the respective mRNAs. Overexpression of tae-miR164 or one of its target genes (TaNAC14) demonstrated that the miR164-TaNAC14 module greatly affects root growth and development and stress (drought and salinity) tolerance in wheat seedlings, and TaNAC14 promotes root growth and development in wheat seedlings and enhances drought tolerance, while tae-miR164 inhibits root development and reduces drought and salinity tolerance by down-regulating the expression of TaNAC14. These findings identify the miR164-TaNAC14 module as well as other tae-miR164-regulated genes which can serve as new genetic resources for stress-resistance wheat breeding.
Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors. In this study, we identified OsDXR, a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice. OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process. OsDXR was highly expressed in rice leaves, and subcellular localization indicated that OsDXR is a chloroplast protein. Many genes involved in chlorophyll biosynthesis and chloroplast development were differentially expressed in the OsDXR knock-out lines compared to the wild type. Moreover, we found that the RNA editing efficiencies of ndhA-1019 and rpl2-1 were significantly reduced in the OsDXR knock-out lines. Furthermore, OsDXR interacted with the RNA editing factor OsMORF1 in a yeast two-hybrid screen and bimolecular fluorescence complementation assay. Finally, disruption of the plastidial 2-C-methyl-derythritol-4-phosphate pathway resulted in defects in chloroplast development and the RNA editing of chloroplast genes.
Omega-3 (linolenic acid (ALA), docosapentaenoic acid, eicosapentaenoic acid) and omega-6 (linoleic acid (LA), arachidonic acid) polyunsaturated fatty acids are essential for health and normal physiological functioning in humans. Here we report a genome-wide association study (GWAS) on LA content in chicken meat. The 19 significant single nucleotide polymorphisms (SNPs) identified by the GWAS approach were annotated in VILL, PLCD1 and OXSR1 genes with highly polymorphic linkage blocks, and explained 4.5% of the phenotypic variation in the LA content. Specifically, the PLCD1 mRNA expression level was negatively correlated with the LA content, and significantly higher in chickens with low LA content than in those with high LA content. In addition, PLCD1 was found to be involved in metabolic pathways, etc. Furthermore, the LA content was correlated with volatile organic compounds (e.g., octanal, etc.), but no relationship was found with intramuscular fat and triglycerides in chicken meat. The results indicated that there are key SNPs in PLCD1 that regulate the content of LA, and it has no significant effect on fat deposition, but may affect the content of volatile organic compounds (VOCs).
Winter jujube (Ziziphus jujuba ‘Dongzao’) is an excellent late maturing variety of fresh-eating jujube in China. Fruit texture is an important indicator of sensory quality. To investigate the correlations among texture indices and establish an evaluation system for winter jujube texture, we used the TMS-Touch instrument to perform a texture profile analysis (TPA) on 1 150 winter jujubes from three major producing areas in China. Eight indices and their best-fit distribution were obtained, including fracture (Pearson), hardness (InvGauss), adhesive force (Weibull), adhesiveness (LogLogistic), cohesiveness (LogLogistic), springiness (BetaGeneral), gumminess (InvGauss), and chewiness (InvGauss). Based on the best-fit distribution curves, each index was divided into five grades (lower, low, medium, high and higher) by the 10th, 30th, 70th and 90th percentiles. Among the texture indices, 82% of the correlation coefficients were highly significant (P<0.01); meanwhile, chewiness was significantly (P<0.01) and positively correlated with springiness and gumminess, of which the correlation coefficients were up to 0.8692 and 0.8096, respectively. However, adhesiveness was significantly (P<0.01) and negatively related to adhesive force with a correlation coefficient of –0.7569. Among hardness, cohesiveness, springiness, gumminess, and chewiness, each index could be well fitted by a multiple linear regression with the remaining four indices, with the coefficients above 0.94 and the mean fitting error and mean prediction error lower than 10%. A comprehensive evaluation model was consequently established based on factor analysis to evaluate the texture quality of winter jujube. The results demonstrated that winter jujube with higher comprehensive scores generally exhibited higher springiness and chewiness, but had lower adhesive force and adhesiveness. We used factor analysis and clustering analysis to divide the eight studied texture into four groups (cohesive factor, adhesive-soft factor, tough-hard factor, and crispness factor), whose representative indices were springiness, adhesiveness, hardness, and fracture, respectively. Overall, this study investigated the variation in each index of winter jujube texture, explored the association among these indices, screened the representative indices, and established a texture evaluation system. The results provide a methodological basis and technical support for evaluating winter jujube texture.