Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22
LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong
2023, 22 (7): 1985-1999.   DOI: 10.1016/j.jia.2022.12.002
Abstract302)      PDF in ScienceDirect      
The identification of stable quantitative trait locus (QTL) for yield-related traits and tightly linked molecular markers is important for improving wheat grain yield. In the present study, six yield-related traits in a recombinant inbred line (RIL) population derived from the Zhongmai 578/Jimai 22 cross were phenotyped in five environments. The parents and 262 RILs were genotyped using the wheat 50K single nucleotide polymorphism (SNP) array. A high-density genetic map was constructed with 1 501 non-redundant bin markers, spanning 2 384.95 cM. Fifty-three QTLs for six yield-related traits were mapped on chromosomes 1D (2), 2A (9), 2B (6), 2D, 3A (2), 3B (2), 4A (5), 4D, 5B (8), 5D (2), 7A (7), 7B (3) and 7D (5), which explained 2.7–25.5% of the phenotypic variances. Among the 53 QTLs, 23 were detected in at least three environments, including seven for thousand-kernel weight (TKW), four for kernel length (KL), four for kernel width (KW), three for average grain filling rate (GFR), one for kernel number per spike (KNS) and four for plant height (PH). The stable QTLs QKl.caas-2A.1, QKl.caas-7D, QKw.caas-7D, QGfr.caas-2B.1, QGfr.caas-4A, QGfr.caas-7A and QPh. caas-2A.1 are likely to be new loci. Six QTL-rich regions on 2A, 2B, 4A, 5B, 7A and 7D, showed pleiotropic effects on various yield traits. TaSus2-2B and WAPO-A1 are potential candidate genes for the pleiotropic regions on 2B and 7A, respectively. The pleiotropic QTL on 7D for TKW, KL, KW and PH was verified in a natural population. The results of this study enrich our knowledge of the genetic basis underlying yield-related traits and provide molecular markers for high-yield wheat breeding.
Reference | Related Articles | Metrics
Can food security and low carbon be achieved simultaneously? —An empirical analysis of the mechanisms influencing the carbon footprint of potato and corn cultivation in irrigation areas
NIU Kunyu, GUO Hui, LIU Jing
2023, 22 (4): 1230-1243.   DOI: 10.1016/j.jia.2023.02.010
Abstract227)      PDF in ScienceDirect      
Irrigated agriculture has tripled since 1950, accounting for 20% of the global arable land and 40% of food production.  Irrigated agriculture increases food security yet has controversial implications for global climate change.  Most previous studies have calculated carbon emissions and their composition in irrigated areas using the engineering approach to life-cycle assessment.  By combining life cycle assessment (LCA)-based carbon emissions accounting with econometric models such as multiple linear regression and structural equation modeling (SEM), we conducted an interdisciplinary study to identify the influencing factors and internal mechanisms of the carbon footprint (CFP) of smallholder crop cultivation on irrigation reform pilot areas.  To this end, we investigated corn and potato production data in the 2019–2020 crop years for 852 plots of 345 rural households in six villages (two irrigation agriculture pilot villages and four surrounding villages as controls) in Southwest China.  The crop CFP in the irrigation agriculture pilot areas was significantly lower than in non-reform areas.  Irrigation reforms mainly impacted the crop CFP through four intermediary effects: the project (implementation of field irrigation channels), technology (improving adoption of new irrigation technologies), management (proper irrigation operation and maintenance), and yield effects.  All effects inhibited the CFP, except for the project effect that promotes carbon emissions.  Among them, yield increase has the greatest impact on reducing CFP, followed by management and technology effects.  Furthermore, planting practices, individual characteristics, and plot quality significantly impacted the crop CFP.  This study has policy implications for understanding the food security–climate nexus in the food production industry.
Reference | Related Articles | Metrics
Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review
LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
2022, 21 (9): 2465-2476.   DOI: 10.1016/j.jia.2022.07.013
Abstract633)      PDF in ScienceDirect      
Maize (Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions.  The main threat to current and future global maize production is heat stress.  Maize may suffer from heat stress in all of the growth stages, either continuously or separately.  In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages.  For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage.  The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages.  The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed.  Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
Reference | Related Articles | Metrics
Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogyne graminicola
LIU Mao-Yan, PENG De-liang, SU Wen, XIANG Chao, JIAN Jin-zhuo, ZHAO Jie, PENG Huan, LIU Shi-ming, KONG Ling-an, DAI Liang-ying, HUANG Wen-kun, LIU Jing
2022, 21 (11): 3263-3277.   DOI: 10.1016/j.jia.2022.08.002
Abstract268)      PDF in ScienceDirect      

Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops.  The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.  However, data on K2SO4 induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.  In this work, K2SO4 treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.  Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such an effect is achieved by rapidly priming hydrogen peroxide (H2O2) accumulation and increasing callose deposition.  Meanwhile, galls and nematodes in rice roots were more in the potassium channel OsAKT1 and transporter OsHAK5 gene-deficient plants than in wild-type, while the K2SO4-induced resistance showed weaker in the defective plants.  In addition, during the process of nematode infection, the expression of jasmonic acid (JA)/ethylene (ET)/brassinolide (BR) signaling pathway-related genes and pathogenesis-related (PR) genes OsPR1a/OsPR1b was up-regulated in rice after K2SO4 treatment.  In conclusion, K2SO4 induced rice resistance against M. graminicola.  The mechanism of inducing resistance was to prime the basal defense and required the participation of the K+ channel and transporter in rice.  These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.

Reference | Related Articles | Metrics
Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region
ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng
2022, 21 (1): 208-221.   DOI: 10.1016/S2095-3119(20)63574-2
Abstract155)      PDF in ScienceDirect      
A bentonite-humic acid (B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effect on soil physicochemical and biological properties, and grain quality is largely unknown.  The effect of B-HA, added at 30 Mg ha−1, was studied at 1, 3, 5 and 7 years after its addition to a degraded sandy soil in a semi-arid region of China.  The addition of B-HA significantly increased water-filled pore space and soil organic carbon, especially at 3 to 5 years after its soil addition to the soil.  Amending the sandy soil with B-HA also increased the content of microbial biomass (MB)-carbon, -nitrogen and -phosphorus, and the activities of urease, invertase, catalase and alkaline phosphatase.  The significant effect of maize (Zea mays L.) growth stage on soil MB and enzyme activities accounted for 58 and 84% of their total variation, respectively.  In comparison, B-HA accounted for 8% of the total variability for each of the same two variables.  B-HA significantly enhanced soil properties and the uptake of N and P by maize in semi-arid areas.  The use of B-HA product would be an effective management strategy to reclaim degraded sandy soils and foster sustainable agriculture production in northeast China and regions of the world with similar soils and climate.

Reference | Related Articles | Metrics
Sexual compatibility of transgenic soybean and different wild soybean populations
HU Yu-qi, SHENG Ze-wen, LIU Jin-yue, LIU Qi, QIANG Shen, SONG Xiao-ling, LIU Biao
2022, 21 (1): 36-48.   DOI: 10.1016/S2095-3119(20)63385-8
Abstract271)      PDF in ScienceDirect      
The introduction of genetically modified (GM) soybean into farming systems raises great concern that transgenes from GM soybean may flow to endemic wild soybean via pollen.  This may increase the weediness of transgenic soybean by increasing the fitness of hybrids under certain conditions and threaten the genetic diversity of wild soybean populations.  Although pollen-mediated gene flow between GM crops and wild relatives is dependent on many factors, the sexual compatibility (SC) determined by their genetic backgrounds is the conclusive factor.  The considerable genetic variation among wild soybean populations may cause compatibility differences between different wild and cultivated soybeans.  Thus, an evaluation of the SC between transgenic soybean and different wild soybeans is essential for assessing the environmental consequences of cultivated soybean–wild soybean transgene flow.  The podding and seed sets were assessed after artificial hybridization using transgenic glyphosate-resistant soybean as the paternal parent and 18 wild soybean populations as the maternal parents.  Then, the average number of filled seeds produced in 200 flowers (AFS) was calculated for each wild soybean under natural self-pollination as well as under artificial crossing with transgenic soybean.  Finally, the index of cross-SC was calculated (ICSC) as the ratio of the AFS of wild soybean artificially crossed with transgenic soybean and the AFS of naturally self-pollinated wild soybean.  The results demonstrated that after self-pollination and crossing with transgenic soybean, the average podding rates of 18 wild soybean populations ranged within 96.50–99.50% and 4.92–18.03%, and the average filled seed numbers per pod varied from 1.70 to 2.69 and 0.20 to 0.48, respectively.  The results showed that approximately 89% of wild soybeans displayed either medium or higher than medium SC with transgenic soybean (ICSC>1.0%).  This implied the high possibility of gene flow via pollen from transgenic soybean to wild soybean.

Reference | Related Articles | Metrics
Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele
ZHAO Dong-sheng, LIU Jin-yu, DING Ai-qiu, ZHANG Tao, REN Xin-yu, ZHANG Lin, LI Qian-feng, FAN Xiao-lei, ZHANG Chang-quan, LIU Qiao-quan
2021, 20 (8): 2032-2042.   DOI: 10.1016/S2095-3119(21)63659-6
Abstract201)      PDF in ScienceDirect      
The panicle architecture and grain size of rice affect not only grain yield but also grain quality, especially grain appearance. The erect-panicle (EP) trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding, but usually accompanied with moderate appearance of milled rice. The null gs9 allele shows a good potential for improving grain shape and appearance. However, GS9 and qPE9-1/DEP1 loci are tightly linked, and their interaction is unclear, which obviously restricts their utilization in modern rice breeding. In the present study, comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently. Three near-isogenic lines (NILs) carrying various allelic combinations of these two loci, NIL (gs9/qpe9-1), NIL (GS9/qPE9-1) and NIL (gs9/qPE9-1), in the EP japonica cultivar 2661 (GS9/qpe9-1) background were developed for genetic interaction analysis. GS9 and qPE9-1 had additive effects on determining grain size, and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars. Additionally, introgression lines (ILs) developed in another released EP japonica cultivar Wuyujing 27 (WYJ27) background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars. This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.
Reference | Related Articles | Metrics
Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications
ZHANG Pan-pan, CHEN Yu-lu, WANG Chen-yang, MA Geng, LÜ Jun-jie, LIU Jing-bao, GUO Tian-cai
2021, 20 (12): 3277-3288.   DOI: 10.1016/S2095-3119(20)63491-8
Abstract165)      PDF in ScienceDirect      
Increasing zinc (Zn) concentration in wheat grain is important to minimize human dietary Zn deficiency.  This study aimed to investigate the effect of foliar Zn and soil nitrogen (N) applications on the accumulation and distribution of N and Zn in grain pearling fractions, N remobilization, and the relationships between nutrient concentration in the vegetative tissues and grain or its fractions in two cropping years in the North China Plain.  The results showed a progressive decrease in N and Zn concentrations from the outer to the inner parts of grain, with most of the accumulation in the core endosperm.  Foliar Zn application significantly increased N concentration in the pericarp, and soil N application increased N concentration in each grain fraction.  Both treatments significantly increased core endosperm Zn concentration.  Foliar Zn had no effect on grain N and Zn distribution.  Soil N application made N concentrated in the aleurone, promoted Zn translocation to the core endosperm and also increased N remobilization and its efficiency from the shoot to the grain, but no improved contribution to grain was found.  N concentration in grain and its fractions were positively correlated with N in vegetative organs at anthesis and maturity, while positive correlations were obtained between N concentration in the pericarp and progressive central area of the endosperm and Zn concentration in the core endosperm.  Thus, foliar Zn and soil N applications effectively increased yield and N and Zn concentrations in the wheat grain, particularly in the endosperm, and could be promising strategies to address Zn deficiency.
 
Reference | Related Articles | Metrics
Protective efficacy of an H5/H7 trivalent inactivated vaccine produced from Re-11, Re-12, and H7-Re2 strains against challenge with different H5 and H7 viruses in chickens
ZENG Xian-ying, CHEN Xiao-han, MA Shu-jie, WU Jiao-jiao, BAO Hong-mei, PAN Shu-xin, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, CHEN Pu-cheng, JIANG Yong-ping, LI Yan-bing, HU Jing-lei, LU Tong, MAO Sheng-gang, GUO Xing-fu, LIU Jing-li, TIAN Guo-bin, CHEN Hua-lan
2020, 19 (9): 2294-2300.   DOI: 10.1016/S2095-3119(20)63301-9
Abstract215)      PDF in ScienceDirect      
We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively.  The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens.  We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses.  In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested.  Our study underscores the importance of timely updating of vaccines for avian influenza control.
Reference | Related Articles | Metrics
Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton
WANG Fang-yong, HAN Huan-yong, LIN Hai, CHEN Bing, KONG Xian-hui, NING Xin-zhu, WANG Xu-wen, YU Yu, LIU Jing-de
2019, 18 (9): 2019-2028.   DOI: 10.1016/S2095-3119(19)62604-3
Abstract122)      PDF in ScienceDirect      
The aim of this study was to elucidate the effects of different machine-harvested cotton-planting patterns on defoliation, yield, and fiber quality in cotton and to provide support for improving the quality of machine-harvested cotton.  In the 2015 and 2016 growing seasons, the Xinluzao 45 (XLZ45) and Xinluzao 62 (XLZ62) cultivars, which are primarily cultivated in northern Xinjiang, were used as study materials.  Conventional wide-narrow row (WNR), wide and ultra-narrow row (UNR), wide-row spacing with high density (HWR), and wide-row spacing with low density (LWR) planting patterns were used to assess the effects of planting patterns on defoliation, yield, and fiber quality.  Compared with WNR, the seed cotton yields were significantly decreased by 2.06–5.48% for UNR and by 2.50–6.99% for LWR, respectively.  The main cause of reduced yield was a reduction in bolls per unit area.  The variation in HWR yield was –1.07–1.07% with reduced bolls per unit area and increased boll weight, thus demonstrating stable production.  In terms of fiber quality indicators, the planting patterns only showed significant effects on the micronaire value, with wide-row spacing patterns showing an increase in the micronaire values.  The defoliation and boll-opening results showed that the number of leaves and dried leaves in HWR was the lowest among the four planting patterns.  Prior to the application of defoliating agent and before machine-harvesting, the numbers of leaves per individual plant in HWR were decreased by 14.45 and 25.00% on average, respectively, compared with WNR, while the number of leaves per unit area was decreased by 27.44 and 36.21% on average, respectively.  The rates of boll-opening and defoliation in HWR were the highest.  Specifically, the boll-opening rate before defoliation and machine-harvesting in HWR was 44.54 and 5.94% higher on average than in WNR, while the defoliation rate prior to machine-harvesting was 3.45% higher on average than in WNR.  The numbers of ineffective defoliated leaves and leaf trash in HWR were the lowest, decreased by 33.40 and 32.43%, respectively, compared with WNR.  In conclusion, the HWR planting pattern is associated with a high and stable yield, does not affect fiber quality, promotes early maturation, and can effectively decrease the amount of leaf trash in machine-picked seed cotton, and thus its use is able to improve the quality of machine-harvested cotton.
Reference | Related Articles | Metrics
Identification of novel genes associated with duck OASL in response to influenza A virus
WANG Xiao-xue, LU Chang, RONG En-guang, HU Jia-xiang, XING Yan-ling, LIU Zheng-yu, GAO Chu-ze, LIU Jin-hua, HUANG Yin-hua
2019, 18 (7): 1451-1459.   DOI: 10.1016/S2095-3119(19)62685-7
Abstract201)      PDF in ScienceDirect      
2´-5´-Oligoadenylate synthetase like protein (OASL) plays a key role in response to viral infections through selectively activating the OAS/RNase L or OASL/RIG-I signaling pathway.  Although classic pathway of OASL is well-known, its regulated genes or co-actors are largely unknown.  To study the possible molecular mechanism of duck OASL (dOASL), we performed RNA-sequencing (RNA-seq) and immunoprecipitation and mass spectrometry (IP-MS) at the level of mRNA and protein, respectively.  For RNA-seq, we used DF1 cell lines (DF1dOASL+/+, DF1cOASL–/–, and DF1) with or without the CK/0513 H5N1 virus (A/chicken/huabei/0513/2007) infection.  1 737 differentially expressed genes (DEGs) were identified as candidate target genes regulated by dOASL.  Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Weighted Correlation Network Analysis (WGCNA) were performed.  We identified one important yellow co-expression module correlated with antiviral immune response.  In this module, Ankyrin repeat and FYVE domain containing 1 (ANKFY1), harboring a BTB domain similar to the methyl CpG-binding protein 1 (MBD1) which bound to OASL in human, was regulated by dOASL.  At protein level, 133 host proteins were detected.  Interestingly, ANKFY1 was one of them binding to dOASL protein.  Further phylogenomic and chromosomal syntenic analysis demonstrated MBD1 was absent in birds, while mammals retained.  It is suggested that OASL-ANKFY1 interaction might act as a compensatory mechanism to regulate gene expression in birds.  Our findings will provide a useful resource for the molecular mechanism research of dOASL.
Reference | Related Articles | Metrics
A rapid approach for isolating a single fungal spore from rice blast diseased leaves
FEI Li-wang, LU Wen-bo, XU Xiao-zhou, YAN Feng-cheng, ZHANG Li-wei, LIU Jin-tao, BAI Yuan-jun, LI Zhen-yu, ZHAO Wen-sheng, YANG Jun, PENG You-liang
2019, 18 (6): 1415-1418.   DOI: 10.1016/S2095-3119(19)62581-5
Abstract298)      PDF in ScienceDirect      
Single spore isolation is a fundamental approach in plant pathology and mycology to isolate and identify plant fungal pathogens from diseased samples.  However, routine single spore isolation procedure is time-consuming and has a high risk of contamination by other microorganisms.  In this study, we developed a rapid approach for isolating a single spore of the fungal pathogen, Pyricularia oryzae, from rice blast diseased leaves in the paddy field with low potential of contamination.  First, rice blast leaves with single lesions were selected in the paddy field, and a single lesion was cut out and pressed and dragged gently across the surface of water agar.  Next, a germinated single spore with a barely visible piece of agar was cut out of water agar with a dissecting needle under a stereomicroscope at approximately 120-fold magnification.  Last, the germinated single spore with water agar was transferred onto oatmeal tomato agar for growth and preservation.  Based on our experience, a skilled technician or student can successfully isolate single spore from over 150 independent diseased samples with nearly no contaminations in a single working day.  This approach is also suitable for isolating single spore from other fungal disease samples that produce abundant aerial conidia.
 
Reference | Related Articles | Metrics
Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker
FU Lu-ping, XIAO Yong-gui, YAN Jun, LIU Jin-dong, WEN Wei-e, ZHANG Yong, XIA Xian-chun, HE Zhong-hu
2019, 18 (5): 939-947.   DOI: 10.1016/S2095-3119(18)61958-6
Abstract949)      PDF in ScienceDirect      
Stem lignin content (SLC) in common wheat (Triticum aestivum L.) contributes to lodging resistance.  Caffeic acid 3-O-methyltransferase (COMT) is a key enzyme involved in lignin biosynthesis.  Characterization of TaCOMT genes and development of gene-specific markers could enable marker-assisted selection in wheat breeding.  In the present study, the full-length genomic DNA (gDNA) sequences of TaCOMT genes located on chromosomes 3A, 3B, and 3D were cloned by homologous cloning.  Two allelic variants, TaCOMT-3Ba and TaCOMT-3Bb, were identified and differed by a 222-bp insertion/deletion (InDel) in the 3´-untranslated region (3´-UTR).  A co-dominant gene-specific marker based on this InDel was developed and designated as TaCOMT-3BM.  A total of 157 wheat cultivars and advanced lines grown in four environments were used to validate the associations between allelic patterns and SLC.  The SLC of cultivars with TaCOMT-3Ba was significantly (P<0.01) higher than that of those with TaCOMT-3Bb, and the marker TaCOMT-3BM could be effectively used in wheat breeding.
Reference | Related Articles | Metrics
Estimates on nitrogen uptake in the subsequent wheat by above-ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain
ZHANG Kai, ZHAO Jie, WANG Xi-quan, XU He-shui, ZANG Hua-dong, LIU Jing-na, HU Yue-gao, ZENG Zhao-hai
2019, 18 (3): 571-579.   DOI: 10.1016/S2095-3119(18)62112-4
Abstract262)      PDF (449KB)(205)      
Leguminous crops play a vital role in enhancing crop yield and improving soil fertility.  Therefore, it can be used as an organic N source for improving soil fertility.  The purpose of this study was to (i) quantify the amounts of N derived from rhizodeposition, root and above-ground biomass of peanut residue in comparison with wheat and (ii) estimate the effect of the residual N on the wheat-growing season in the subsequent year.  The plants of peanut and wheat were stem fed with 15N urea using the cotton-wick method at the Wuqiao Station of China Agricultural University in 2014.  The experiment consisted of four residue-returning strategies in a randomized complete-block design: (i) no return of crop residue (CR0); (ii) return of above-ground biomass of peanut crop (CR1); (iii) return of peanut root biomass (CR2); and (iv) return of all residue of the whole peanut plant (CR3).  The 31.5 and 21% of the labeled 15N isotope were accumulated in the above-ground tissues (leaves and stems) of peanuts and wheat, respectively.  N rhizodeposition of peanuts and wheat accounted for 14.91 and 3.61% of the BG15N, respectively.  The 15N from the below-ground 15N -labeled of peanuts were supplied 11.3, 5.9, 13.5, and 6.1% of in the CR0, CR1, CR2, and CR3 treatments, respectively.  Peanut straw contributes a significant proportion of N to the soil through the decomposition of plant residues and N rhizodeposition.  With the current production level on the NCP, it is estimated that peanut straw can potentially replace 104 500 tons of synthetic N fertilizer per year.  The inclusion of peanut in rotation with cereal can significantly reduce the use of N fertilizer and enhance the system sustainability.

 
Reference | Related Articles | Metrics
Changes of moisture distribution and migration in fresh ear corn during storage
WANG Hao, LIU Jing-sheng, MIN Wei-hong, ZHENG Ming-zhu, LI Hao
2019, 18 (11): 2644-2651.   DOI: 10.1016/S2095-3119(19)62715-2
Abstract118)      PDF in ScienceDirect      
Understanding of moisture changes in fresh ear corn (Zea mays L.) during storage is imperative for maintaining fresh corn quality.  The changes of moisture distribution and migration in fresh ear corn during storage were investigated using low-field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).  Water loss was greater than water migration in fresh ear corn within the first hour of storage; thereafter, water loss was weaker than water migration.  With the extension of storage time, the signal intensity of MRI in different parts of sliced fresh corn with cob showed a downward trend, and the rate of signal intensity reduction was higher in the peripheral area than at the central part of sliced fresh corn with cob.  The relative proportion of bound water increased with a concomitant drop in that of free water, when the total water content reduced in fresh ear corn under storage.  In conclusion, NMR and MRI are useful and non-destructive tools for real-time monitoring of moisture distribution, migration, and loss in fresh ear corn during storage to assess its quality.  These results can be used for future design of the preserving and processing conditions for fresh ear corn.
Reference | Related Articles | Metrics
Synonymous codon usage pattern in model legume Medicago truncatula
SONG Hui, LIU Jing, CHEN Tao, NAN Zhi-biao
2018, 17 (09): 2074-2081.   DOI: 10.1016/S2095-3119(18)61961-6
Abstract360)      PDF in ScienceDirect      
Synonymous codon usage pattern presumably reflects gene expression optimization as a result of molecular evolution.  Though much attention has been paid to various model organisms ranging from prokaryotes to eukaryotes, codon usage has yet been extensively investigated for model legume Medicago truncatula.  In present study, 39 531 available coding sequences (CDSs) from M. truncatula were examined for codon usage bias (CUB).  Based on analyses including neutrality plots, effective number of codons plots, and correlations between optimal codons frequency and codon adaptation index, we conclude that natural selection is a major driving force in M. truncatula CUB.  We have identified 30 optimal codons encoding 18 amino acids based on relative synonymous codon usage.  These optimal codons characteristically end with A or T, except for AGG and TTG encoding arginine and leucine respectively.  Optimal codon usage is positively correlated with the GC content at three nucleotide positions of codons and the GC content of CDSs.  The abundance of expressed sequence tag is a proxy for gene expression intensity in the legume, but has no relatedness with either CDS length or GC content.  Collectively, we unravel the synonymous codon usage pattern in M. truncatula, which may serve as the valuable information on genetic engineering of the model legume and forage crop.
 
Reference | Related Articles | Metrics
Golden Promise barley (Hordeum vulgare) is a suitable candidate model host for investigation interaction with Heterodera avenae
LUO Shu-jie, KONG Ling-an, PENG Huan, HUANG Wen-kun, CUI Jiang-kuan, LIU Jing, QIAO Fen, JIAN Heng, PENG De-liang
2017, 16 (07): 1537-1546.   DOI: 10.1016/S2095-3119(16)61595-2
Abstract1147)      PDF in ScienceDirect      
    Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study, a barley model plant, the Hordeum vulgare cultivar Golden Promise, was investigated for its potential as a candidate model host to study its interaction with H. avenae. CCN-infective juveniles were attracted by the root tips and gathered around the root elongation zones of Golden Promise on 0.7% water agar plates. The juveniles invaded the roots and developed successfully until maturation at 40 days after inoculation in sterile sand soil. The cryotomy and syncytium measurements indicated that the syncytia enlarged gradually throughout the development of the nematodes and caused the corresponding root regions to swell obviously. Quantitative real-time PCR analysis showed that the down-regulation of defence-related barley genes and up-regulation of development-related barley genes contribute to the understanding of compatible interaction between H. avenae and Golden Promise. Barley stripe mosaic virus (BSMV) virus-induced gene silencing (VIGS) can be used in the roots of Golden Promise. In conclusion, the Hordeum vulgare cultivar Golden Promise is a suitable candidate model host for interaction studies with Heterodera avenae. The studies presented above document the first CCN host that not only has published genome context but also be compatible to BSMV VIGS.  
Reference | Related Articles | Metrics
Photosynthetic performance of switchgrass and its relation to field productivity: A three-year experimental appraisal in semiarid Loess Plateau
GAO Zhi-juan, LIU Jin-biao, AN Qin-qin, WANG Zhi, CHEN Shao-lin, XU Bing-cheng
2017, 16 (06): 1227-1235.   DOI: 10.1016/S2095-3119(16)61397-7
Abstract870)      PDF in ScienceDirect      
To reveal photosynthetic characteristics and biomass yield is important for evaluating introduced species adaptation to local environments.  A field experiment was conducted over three consecutive years (2011–2013) to evaluate photosynthetic characteristics, soil water content, aboveground biomass accumulation, and water use efficiency (WUE) in switchgrass (Panicum virgatum L.) populations exposed to three row spacing (20, 40 and 60 cm) treatments in two growth months (June and August) on the semiarid Loess Plateau of China.  Results indicated that net photosynthetic rate (Pn), transpiration rate (Tr), instantaneous water use efficiency (WUEi) and plant height of switchgrass showed an increased trend, but aboveground biomass production and WUE showed an decreased trend with enlarged row spacings over the three years.  The maximum daily mean Pn values (17.9, 18.4 and 19.7 µmol CO2 m–2 s–1) were observed in 2011, and the highest aboveground biomass production (67 771.8, 6 976.8 and 6 609.2 kg ha–1) were recorded in 2012 for 20, 40 and 60 cm, respectively.  A close correlation between tiller numbers and aboveground biomass production (r=0.907) was observed.  Pn was positively and significantly correlated with biomass per tiller, but it showed a negative correlation with aboveground biomass production.  Our results confirm that wide row spacing is beneficial for single plant development, while narrow row spacing favors biomass production and water use of switchgrass in the region.  It also implies that single leaf growth and performance could explain the switchgrass community density differences, while fails to account for the aboveground biomass production.
Reference | Related Articles | Metrics
Identification of QTLs for seed storability in rice under natural aging conditions using two RILs with the same parent Shennong 265
DONG Xiao-yan, FAN Shu-xiu, LIU Jin, WANG Qi, LI Mei-rong, JIANG Xin, LIU Zhen-yu, YIN Ye-chao, WANG Jia-yu
2017, 16 (05): 1084-1092.   DOI: 10.1016/S2095-3119(16)61579-4
Abstract1222)      PDF in ScienceDirect      
Seed storability (SS) is an important trait for agronomic production and germplasm preservation in rice (Oryza sativa L.).  Quantitative trait locus (QTL) for seed storability in three storage periods was identified using two sets of recombinant inbred lines (RILs) derived from the crosses with a common female parent Shennong 265 (SN265).  Ten QTLs for seed storability were detected on chromosomes 1, 2, 3, 4, 6, 8, and 12 in SL-RILs (SN265/Lijiangxingtuanheigui (LTH)), and a total of 12 QTLs were identified on chromosomes 2, 3, 4, 6, 9, and 10 in SH-RILs (SN265/Luhui 99 (LH99)) in different storage periods.  Among these QTLs, five major QTLs were identified in more than one storage period.  The qSS3-1, qSS3-2, qSS12-1, and qSS12-2 were detected in SL-RILs.  Similarly, qSS2-2, qSS2-3, qSS6-2, qSS6-3, qSS6-4, qSS9-1, and qSS9-2 were detected in SH-RILs.  In addition, the maximum phenotypic variation was derived from the qSS6-1 and qSS9-2, explaining 53.58 and 29.09%, respectively, while qSS6-1 was a new stable QTL for seed storability.  These results provide an opportunity for pyramiding and map-based cloning major QTLs for seed storability in rice.
Reference | Related Articles | Metrics
A duplex RT-PCR assay for detection of H9 subtype avian influenza viruses and infectious bronchitis viruses
WEI Yan-di, GAO Wei-hua, SUN Hong-lei, YU Chen-fang, PEI Xing-yao, Sun Yi-peng, LIU Jin-hua, PU Juan
2016, 15 (9): 2105-2113.   DOI: 10.1016/S2095-3119(15)61316-8
Abstract1732)      PDF in ScienceDirect      
H9 subtype avian influenza virus (AIV) and infectious bronchitis virus (IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction (RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR (dRT-PCR) was established. Two primer sets target the hemagglutinin (HA) gene of H9 AIV and the nucleocapsid (N) gene of IBV, respectively. Specific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other in·fectious avian viruses. The sensitivity of the dRT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×101, 1.5×101 and 1.5×101 50% egg infective doses (EID50) mL–1, respectively. The concordance rates between the dRT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the dRT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and surveillance of H9 AIVs and IBVs.
Reference | Related Articles | Metrics
Winter cover crops alter methanotrophs community structure in a double-rice paddy soil
LIU Jing-na, ZHU Bo, YI Li-xia, DAI Hong-cui, XU He-shui, ZHANG Kai, HU Yue-gao, ZENG Zhao-hai
2016, 15 (3): 553-565.   DOI: 10.1016/S2095-3119(15)61206-0
Abstract2200)      PDF in ScienceDirect      
Methanotrophs play a vital role in the mitigation of methane emission from soils. However, the influences of cover crops incorporation on paddy soil methanotrophic community structure have not been fully understood. In this study, the impacts of two winter cover crops (Chinese milk vetch (Astragalus sinicus L.) and ryegrass (Lolium multiflorum Lam.), representing leguminous and non-leguminous cover crops, respectively) on community structure and abundance of methanotrophs were evaluated by using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and real-time PCR technology in a double-rice cropping system from South China. Four treatments were established in a completely randomized block design: 1) double-rice cropping without nitrogen fertilizer application, CK; 2) double-rice cropping with chemical nitrogen fertilizer application (200 kg ha–1 urea for entire double-rice season), CF; 3) Chinese milk vetch cropping followed by double-rice cultivation with Chinese milk vetch incorporation, MV; 4) ryegrass cropping followed by double-rice cultivation with ryegrass incorporation, RG. Results showed that cultivating Chinese milk vetch and ryegrass in fallow season decreased soil bulk density and increased rice yield in different extents by comparison with CK. Additionally, methanotrophic bacterial abundance and community structure changed significantly with rice growth. Methanotrophic bacterial pmoA gene copies in four treatments were higher during late-rice season (3.18×107 to 10.28×107 copies g–1 dry soil) by comparison with early-rice season (2.1×107 to 9.62×107 copies g–1 dry soil). Type I methanotrophs absolutely predominated during early-rice season. However, the advantage of type I methanotrophs kept narrowing during entire double-rice season and both types I and II methanotrophs dominated at later stage of late-rice.
Reference | Related Articles | Metrics
Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.)
YAO Xiao-yun, WANG Jia-yu, LIU Jin, WANG Wei, YANG Sheng-long, ZHANG Yu, XU Zheng-jin
2016, 15 (11): 2437-2450.   DOI: 10.1016/S2095-3119(15)61311-9
Abstract1559)      PDF in ScienceDirect      
    Grain traits are major constraints in rice production, which are key factors in determining grain yield and market values. This study used two recombinant inbred line (RIL) populations, RIL-JJ (japonica/japonica) and RIL-IJ (indica/japonica) derived from the two crosses Shennong 265/Lijiangxintuanheigu (SN265/LTH) and Shennong 265/Luhui 99 (SN265/LH99). Sixty-eight quantitative trait loci (QTLs) associated with 10 grain traits were consistently detected on the 12 chromosomes across different populations and two environments. Although 61.75% of the QTLs clustered together across two populations, only 16.17% could be detected across two populations. Eight major QTLs were detected on the 9, 10 and 12 chromosomes in RIL-JJ under two environments, a novel QTL clustered on the 10 chromosome, qGT10, qBT10 and qTGW10, have a higher percentage of explained phenotypic variation (PVE) and additive effect; 15 major QTLs were detected on the 5, 8, 9, and 11 chromosomes in RIL-IJ under two environments, a novel clustered QTL, qGT8 and qTGW8, on the 8 chromosome have a higher additive effect. Finally, the analysis of major QTL-BSA mapping narrowed the qTGW10 to a 1.47-Mb region flanked by simple sequence repeat markers RM467 and RM6368 on chromosome 10. A comparison of QTLs for grain traits in two different genetic backgrounds recombinant inbred line populations confirmed that genetic background had a significant impact on grain traits. The identified QTLs were stable across different populations and various environments, and 29.42% of QTLs controlling grain traits were reliably detected in different environments. Fewer QTLs were detected for brown rice traits than for paddy rice traits, 7 and 17 QTLs brown rice out of 25 and 43 QTLs under RIL-JJ and RIL-IJ populations, respectively. The identification of genes constituting the QTLs will help to further our understanding of the molecular mechanisms underlying grain shape.
Reference | Related Articles | Metrics
Nested RT-PCR method for the detection of European avian-like H1 swine influenza A virus
WEI Yan-di, PEI Xing-yao, ZHANG Yuan, YU Chen-fang, SUN Hong-lei, LIU Jin-hua, PU Juan
2016, 15 (05): 1095-1102.   DOI: 10.1016/S2095-3119(15)61092-9
Abstract1681)      PDF in ScienceDirect      
    Swine influenza A virus (swine IAV) circulates worldwide in pigs and poses a serious public health threat, as evidenced by the 2009 H1N1 influenza pandemic. Among multiple subtypes/lineages of swine influenza A viruses, European avian-like (EA) H1N1 swine IAV has been dominant since 2005 in China and caused infections in humans in 2010. Highly sensitive and specific methods of detection are required to differentiate EA H1N1 swine IAVs from viruses belonging to other lineages and subtypes. In this study, a nested reverse transcription (RT)-PCR assay was developed to detect EA H1 swine IAVs. Two primer sets (outer and inner) were designed specifically to target the viral hemagglutinin genes. Specific PCR products were obtained from all tested EA H1N1 swine IAV isolates, but not from other lineages of H1 swine IAVs, other subtypes of swine IAVs, or other infectious swine viruses. The sensitivity of the nested RT-PCR was improved to 1 plaque forming unit (PFU) mL–1 which was over 104 PFU mL–1 for a previously established multiplex RT-PCR method. The nested RT-PCR results obtained from screening 365 clinical samples were consistent with those obtained using conventional virus isolation methods combined with sequencing. Thus, the nested RT-PCR assay reported herein is more sensitive and suitable for the diagnosis of clinical infections and surveillance of EA H1 swine IAVs in pigs and humans.
Reference | Related Articles | Metrics
The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw
LIU Jing-jing, LIU Xiao-ping, REN Ji-wei, ZHAO Hong-yan, YUAN Xu-feng, WANG Xiao-fen, Abdelfattah Z M Salem, CUI Zong-jun
2015, 14 (3): 503-513.   DOI: 10.1016/S2095-3119(14)60831-5
Abstract2078)      PDF in ScienceDirect      
To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and adsorption. Air-dried and chopped rice straw was treated with either fermentation for 30 d after adding 1.5 L nutrient solution (50 mL inocula L–1, 1.2×1012 CFU mL–1 inocula) kg–1 straw dry matter, or spraying a large amount of culture broth (1.5 L kg–1 straw dry matter, 1.5×1011 CFU mL–1 culture broth) on the straw and allowing it to adsorb for 30 min. The feed quality and aerobic stability of the resulting forage were examined. Both treatments improved the feed quality of rice straw, and adsorption was better than fermentation for preserving nutrients and improving digestibility, as evidenced by higher dry matter (DM) and crude protein (CP) concentrations, lower neutral detergent fiber (NDF), acid detergent fiber (ADF) and NH3-N concentrations, as well as higher lactic acid production and in vitro digestibility of DM (IVDMD). The aerobic stability of the adsorbed straw and the fermented straw was 392 and 480 h, respectively. After being exposed to air, chemical components and microbial community of the fermented straw were more stable than the adsorbed straw.
Reference | Related Articles | Metrics
Decreased Pollen Viability and Thicken Pollen Intine in Antisense Silenced Brassica campestris Mutant of BcMF19
LIU Jin-long, GAO Ming-hui, LIU Ying , CAO Jia-shu
2014, 13 (5): 954-962.   DOI: 10.1016/S2095-3119(13)60581-X
Abstract1792)      PDF in ScienceDirect      
Brassica campestris male fertility 19 (BcMF19; GenBank accession number GQ902048.1), a gene that is specially expressed in tapetum cells and microspores during anther development in B. campestris ssp. chinensis, which is learned from the previous in situ hybridization study. In the present study, we constructed antisense-silenced plants of BcMF19 using B. campestris ssp. chinensis to validate this prediction. The morphology of the pistils, long anthers, and short anthers was significantly affected in 35sbcmf19 compared with the control samples. 4´-6-Diamidino-2-phenylindole staining revealed that two generative nuclei and one large vegetative nucleus were not affected in the mutant compared with control. Statistical analysis of Alexander’s staining results showed that 96% of the control pollen grains had vitality, whereas only 86% of the mutant pollen grains did. Under scanning electron microscopy, the mutant demonstrated numerous abnormal pollen grains and resembled dried persimmon. The frequency of normal pollen grains was approximately 18%. Under transmission electron microscopy, the pollen intine during the binucleate and mature pollen stages in 35sbcmf19 exhibited abnormal thickening, especially at the germinal furrows, compared with control. In vitro pollen germination test showed that the tips of the mutant pollen tubes transformed into globular alveoli and stopped growing compared with control. On the other hand, in vivo pollen germination test suggested that BcMF19 affected the pollen tube extension in the pistil. These findings indicate that BcMF19 is essential to the pollen development and pollen tube extension of B. campestris ssp. chinensis.
Reference | Related Articles | Metrics
Effects of Nitrogen Application Rate and Ratio on Lodging Resistance of Super Rice with Different Genotypes
ZHANG Wu-jun, LI Gang-hua, YANG Yi-ming, LI Quan, ZHANG Jun, LIU Jin-you, WANG Shao-hua, TANG She , DING Yan-feng
2014, 13 (1): 63-72.   DOI: 10.1016/S2095-3119(13)60388-3
Abstract2140)      PDF in ScienceDirect      
The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphological traits and physical strength in basal internodes by comparing japonica and indica super rice cultivars. Field experiments, with three nitrogen levels (0, 150 and 300 kg ha-1) and two ratios of basal to topdressing (8:2 and 5:5) with two super rice cultivars (Yliangyou 2 and Wuyunjing 23), were conducted in the Baolin Farm, Danyang Country, Jiangsu Province, China, in 2011 and 2012. Effects of N fertilizer rates and ratios on morphology of whole plant, morphology traits in basal internodes and culm’s physical strength parameters were investigated at 20 d after full heading stage. LI of Yliangyou 2 was significant greater than that of Wuyunjing 23 due to larger bending moment by whole plant (WP) with higher plant height and gravity center height. With higher volume of N fertilizer, LI of two super rice cultivars was increased conspicuously. However, no significant effect was detected with increase of panicle fertilizer ratio. The size of breaking strength (M) in basal internodes was the key factor determining LI among N fertilizer treatments. Correlation analysis revealed that M value was positively related bending stress (BS) of Wuyunjing 23 and section modulus (Z) of Yliangyou 2, respectively. The higher N fertilizer levels induced reduction of BS of Wuyunjing 23 due to weak culm and leaf sheath plumpness status and reduced Z of Yliangyou 2 owning to small diameter and culm wall thickness, consequently, influencing their M indirectly. These results suggested that breaking strength was the key factor influencing LI with increase of N fertilizer levels. However, the lodging-related morphology mechanism was different with genotypes. Culm wall thickness and diameter in basal internodes of indica super rice and culm and leaf sheath plumpness status of japonica super rice influenced breaking strength, as well as lodging index, respectively.
Reference | Related Articles | Metrics
Effect of Alkali Stress on Soluble Sugar, Antioxidant Enzymes and Yield of Oat
BAI Jian-hui, LIU Jing-hui, ZHANG Na, YANG Jun-heng, SA Ru-la , WU Lan
2013, 12 (8): 1441-1449.   DOI: 10.1016/S2095-3119(13)60556-0
Abstract1507)      PDF in ScienceDirect      
Alkali stress can cause severe crop damage and reduce production. However, physiological processes involved in alkali stress in oat seedlings are not well understood. In this study, physiological responses and yield of oat to alkali stress were studied using the alkali-tolerant oat genotype Vao-9 and the alkali-sensitive oat genotype Baiyan 5. The results were: (i) low concentrations of alkali stress (25 and 50 mmol L-1) significantly reduced the yield and grain weight while increased the oat grain number per spike. A negative correlation between yield and malondialdehyde (MDA) content at the jointing and grain filling stages and positive correlations between yield on one hand and superoxide dismutase (SOD), and peroxidase (POD) activities on the other at the jointing stage were observed. There was a positive correlation between MDA and soluble sugar at the grain filling stage; (ii) soluble sugar content was increased at the jointing and grain filling stages and decreased at the heading stage by alkali stress; (iii) alkali stress increased the SOD activity during the heading and grain filling stages, and increased the POD activity at the heading stage. As compared to the control, the increase of MDA contents in alkali-treated oat was observed, during the jointing, heading and grain filling stages; (iv) under alkali stress, the oat genotype Vao-9 showed higher antioxidant enzyme activity and lower soluble sugar contents during the heading stage, and lower MDA contents than those in the oat genotype Baiyan 5 under alkali stress. The result suggested that the high ROS scavenging capacity and soluble sugar levels might play roles in oat response to alkali stress.
Reference | Related Articles | Metrics
Microbial Community Dynamics During Biogas Slurry and Cow Manure Compost
ZHAO Hong-yan, LI Jie, LIU Jing-jing, Lü Yu-cai, WANG Xiao-fen , CUI Zong-jun
2013, 12 (6): 1087-1097.   DOI: 10.1016/S2095-3119(13)60328-7
Abstract1555)      PDF in ScienceDirect      
This study evaluated the microbial community dynamics and maturation time of two compost systems: biogas slurry compost and cow manure compost, with the aim of evaluating the potential utility of a biogas slurry compost system. Denaturing gradient gel electrophoresis (DGGE), gene clone library, temperature, C/N ratio, and the germination index were employed for the investigation, cow manure compost was used as the control. Results showed that the basic strip and dominant strips of the DGGE bands for biogas slurry compost were similar to those of cow manure compost, but the brightness of the respective strips for each system were different. Shannon-Weaver indices of the two compost systems differed, possessing only 22% similarity in the primary and maturity stages of the compost process. Using bacterial 16S rRNA gene clone library analysis, 88 bacterial clones were detected. Further, 18 and 13 operational taxonomic units (OTUs) were present in biogas slurry and cow manure compost, respectively. The 18 OTUs of the biogas slurry compost belonged to nine bacterial genera, of which the dominant strains were Bacillus sp. and Carnobacterium sp.; the 13 OTUs of the cow manure compost belonged to eight bacterial genera, of which the dominant strains were Psychrobacter sp., Pseudomonas sp., and Clostridium sp. Results demonstrated that the duration of the thermophilic phase (more than 50°C) for biogas slurry compost was 8 d less than the according duration for cow manure compost, and the maturation times for biogas slurry and cow manure compost were 45 and 60 d, respectively. It is an effective biogas slurry assimilate technology by application of biogas slurry as nitrogen additives in the manufacture of organic fertilizer.
Reference | Related Articles | Metrics
Baicalin Induces IFN-α/β and IFN-γ Expressions in Cultured Mouse Pulmonary Microvascular Endothelial Cells
HU Ge, XUE Jiu-zhou, LIU Jing, ZHANG Tao, DONG Hong, DUAN Hui-qin, YANG Zuo-jun, RENXiao-ming , MU Xiang
2012, 12 (4): 646-654.   DOI: 10.1016/S1671-2927(00)8585
Abstract1571)      PDF in ScienceDirect      
We studied the effect of baicalin, an extract from Radix Scutellariae (a traditional Chinese medicine) in inducing mouse pulmonary microvascular endothelial cells (MPMVECs) to produce interferons (IFNs). MPMVECs were cultured in vitro in the presence of different concentrations of baicalin (10, 20, and 30 μg mL-1), and the cells and the culture media were harvested at various time intervals. The proteins and mRNA levels (relative to β-actin) of IFN-α/β and IFN-γ were analyzed by RT-PCR and enzyme-linked immunosorbent assay (ELISA). It was observed that baicalin substantially up-regulated the expression of IFN-α/β and IFN-γ. In all baicalin-treated groups, the relative levels of IFN-α/β and IFN-γ mRNAs peaked after 12 h of culturing, and IFN-α/β and IFN-γ proteins peaked after 24 h of culturing. These results suggest that baicalin can effectively induce the expression of IFNs in pulmonary microvascular endothelial cells, and thus potentially act as an antiviral compound. This study may provide background information for developing new antiviral drugs based on baicalin.
Reference | Related Articles | Metrics
Hydrogen Sulfide May Function Downstream of Nitric Oxide in Ethylene- Induced Stomatal Closure in Vicia faba L.
LIU Jing, HOU Zhi-hui, LIU Guo-hua, HOU Li-xia, LIU Xin
2012, 12 (10): 1644-1653.   DOI: 10.1016/S1671-2927(00)8697
Abstract1354)      PDF in ScienceDirect      
Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal movement in response to ethylene in Vicia faba L. Ethylene treatment resulted in the dose-dependent stomatal closure under light, and this effect was blocked by the inhibitors of H2S biosynthesis in V. faba L. Additionally, ethylene induces H2S generation and increases L-/D-cysteine desulfhydrase (pyridoxalphosphate-dependent enzyme) activity in leaves of V. faba L. Inhibitors of H2S biosynthesis have no effect on the ethylene-induced stomatal closure, NO accumulation, and nitrate reductase (NR) activity in guard cells or leaves of V. faba L. Moreover, the ethylene-induced increase of H2S levels and L-/Dcysteine desulfhydrase activity declined when NO generation was inhibited. Therefore, we conclude that H2S and NO probably are involved in the signal transduction pathway of ethylene-induced stomatal closure. H2S may represent a novel component downstream of NO in the ethylene-induced stomatal movement in V. faba L.
Reference | Related Articles | Metrics