Sucrose phosphate synthase (SPS) is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase (SPP) for sucrose synthesis, and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality. However, studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking. In the present study, a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1. The gene structures and their promoter cis-elements, protein conserved motifs, subcellular localizations, physiological functions and biochemical properties were analyzed. A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication (WGD) and segmental duplication played vital roles in MdSPS gene family expansion. The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication. Furthermore, three SPS gene subfamilies were classified based on phylogenetic relationships, and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies. In addition, a major gene related to sucrose accumulation (MdSPSA2.3) was identified according to the highly consistent trends in the changes of its expression in four apple varieties (‘Golden Delicious’, ‘Fuji’, ‘Qinguan’ and ‘Honeycrisp’) and the correlation between gene expression and soluble sugar content during fruit development. Furthermore, the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit. The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.
Laboratory mutants of Sclerotinia sclerotiorum (Lib) de Bary, resistant to boscalid, have been extensively characterized. However, the resistance situation in the lettuce field remains largely elusive. In this study, among the 172 S. sclerotiorum isolates collected from asparagus lettuce field in Jiangsu Province, China, 132 isolates (76.74%) exhibited low-level resistance to boscalid (BosLR), with a discriminatory dose of 5 μg mL–1. In comparison to the boscalid-sensitive (BosS) isolates, most BosLR isolates demonstrated a slightly superior biological fitness, as evidenced by data on mycelial growth, sclerotium production and pathogenicity. Moreover, most BosLR isolates showed comparable levels of oxalic acid (OA) accumulation, increased exopolysaccharide (EPS) content and reduced membrane permeability when compared to the BosS isolates. Nevertheless, their responses to distinct stress factors diverged significantly. Furthermore, the effectiveness of boscalid in controlling BosLR isolates on radish was diminished compared to its efficacy on BosS isolates. Genetic mutations were identified in the SDH genes of BosLR isolates, revealing the existence of three resistant genotypes: I (A11V at SDHB, SDHBA11V), II (Q38R at SDHC, SDHCQ38R) and III (SDHBA11V+SDHCQ38R). Importantly, no cross-resistance was observed between boscalid and other fungicides such as thifluzamide, pydiflumetofen, fluazinam, or tebuconazole. Our molecular docking analysis indicated that the docking total score (DTS) of the type I resistant isolates (1.3993) was lower than that of the sensitive isolates (1.7499), implying a reduced affinity between SDHB and boscalid as a potential mechanism underlying the boscalid resistance in S. sclerotiorum. These findings contribute to an enhanced comprehension of boscalid’s mode of action and furnish valuable insights into the management of boscalid resistance.
were inoculated with 2 000 eggs, and cultured in an incubator at 23°C/20°C with a 16 h/8 h light/dark photoperiod. After three months inoculation, 36±7.2 cysts and females were extracted from the infested potato roots, no females and cysts were observed on control plants.
This is the first report of potato golden cyst nematode G. rostochiensis in China.
Marek’s disease (MD), a highly cell-associated and contagious disease of chickens caused by Marek’s disease virus (MDV) can result in neural lesions, immunosuppression and neoplasia in chicken. The Meq gene is an important oncogene in the MDV genome, and it is expressed highly in MD tumor tissues and MD T-lymphoblastoid cell lines. An experiment was conducted to elucidate the role of Meq in MD tumor transformation. RNA interference technology was used to block its expression, and then analyzed the biological effects of Meq knockdown on the MD tumor cell line MSB1. A small interfering RNA with an interference efficiency of 70% (P<0.01) was transfected into MSB1 cells to knock down the expression of Meq gene. The cell proliferation, cycle and apoptosis were detected post-Meq knockdown. The results showed that MSB1 cell proliferation was downregulated remarkably at 48 h (P<0.01), 60 h (P<0.05) and 72 h (P<0.01) post-Meq knockdown. The cell cycle was unaffected (P>0.05). B-cell lymphoma 2 gene (BCL2) was anti-apoptotic and caspase-6 was the effector in the apoptosis pathway. The activity of caspase-6 was upregulated (P<0.05) significantly and BCL2 gene expression was downregulated (P<0.05) significantly post-Meq knockdown, suggesting cell apoptosis might be induced. MSB1 cell migration did not exhibit any obvious change (P>0.05) post-Meq knockdown, but the expression of two genes (matrix metalloproteinase 2 (MMP2) and MMP9) that are correlated closely to cell invasion was downregulated (P<0.05) remarkably post-Meq knockdown. The Meq knockdown might affect the main features of tumorous cells, including proliferation, apoptosis, and invasion, suggesting that the Meq gene might play a crucial role in interfering with lymphomatous cell transformation.
In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathogenicity tests were applied to study the isolates which were recovered from diseased plants collected from 17 different districts of Shanxi Province. The results were as follows: 1) Through morphological and molecular identification, the following 7 species of Fusarium were identified: F. oxysporum, F. solani, F. verticillioides, F. subglutinans, F. chlamydosporum, F. sporotrichioides, and F. semitectum; 2) 56 isolates of F. oxysporum were identified using specific primer amplification, among which, 29, 5 and 6 isolates were respectively identified as F. oxysporum f. sp. lycopersici physiological race 1, race 2, and race 3; 3) pathogenicity test indicated the significant pathogenicity of F. oxysporum, F. solani, F. verticillioides, and F. subglutinans to tomato plant. Therefore, among these 4 species confirmed as pathogenic to tomato in Shanxi, the highest isolation rate (53.3%) corresponded to F. oxysporum. Three physiological species, race 1, race 2, and race 3 of F. oxysporum f. sp. lycopersici are detected in Shanxi, among which race 1 is the most widespread pathogen and is also considered as the predominant race.