Sucrose phosphate synthase (SPS) is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase (SPP) for sucrose synthesis, and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality. However, studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking. In the present study, a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1. The gene structures and their promoter cis-elements, protein conserved motifs, subcellular localizations, physiological functions and biochemical properties were analyzed. A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication (WGD) and segmental duplication played vital roles in MdSPS gene family expansion. The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication. Furthermore, three SPS gene subfamilies were classified based on phylogenetic relationships, and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies. In addition, a major gene related to sucrose accumulation (MdSPSA2.3) was identified according to the highly consistent trends in the changes of its expression in four apple varieties (‘Golden Delicious’, ‘Fuji’, ‘Qinguan’ and ‘Honeycrisp’) and the correlation between gene expression and soluble sugar content during fruit development. Furthermore, the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit. The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.
Diagnosis and characterization of the ribosomal DNA-ITS of potato rot nematode (Ditylenchus destructor) populations from Chinese medicinal herbs
The potato rot nematode (Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide. In this study, 43 populations of D. destructor were collected from different hosts across China, including 37 populations from Chinese herbal medicine plants. Obtained sequences of ITS-rDNA and D2–D3 of 28S-rDNA genes of D. destructor were compared and analyzed. Nine types of significant length variations in ITS sequences were observed among all populations. The differences in ITS1 length were mainly caused by the presence of repetitive elements with substantial base substitutions. Reconstructions of ITS1 secondary structures showed that the minisatellites formed a stem structure. Ten haplotypes were observed in all populations based on mutations and variations of helix H9. Among them, 3 known haplotypes (A–C) were found in 7 populations isolated from potato, sweet potato, and Codonopsis pilosula, and 7 unique haplotypes were found in other 36 populations collected from C. pilosula and Angelica sinensis compared with 7 haplotypes (A–G) according to Subbotin’ system. These unique haplotypes were different from haplotypes A–G, and we named them as haplotypes H–N. The present results showed that a total of 14 haplotypes (A–N) of ITS-rDNA have been found in D. destructor. Phylogenetic analyses of ITS-rDNA and D2–D3 showed that all populations of D. destructor were clustered into two major clades: one clade only containing haplotype A from sweet potato and the other containing haplotypes B–N from other plants. For further verification, PCR-ITS-RFLP profiles were conducted on 7 new haplotypes. Collectively, our study suggests that D. destructor populations on Chinese medicinal materials are very different from those on other hosts and this work provides a paradigm for relevant researches.
Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein
Aegilops umbellulata (UU) is a wheat wild relative that has potential use in the genetic improvement of wheat. In this study, 46 Ae. umbellulata accessions were investigated for stripe rust resistance, heading date (HD), and the contents of iron (Fe), zinc (Zn), and seed gluten proteins. Forty-two of the accessions were classified as resistant to stripe rust, while the other four accessions were classified as susceptible to stripe rust in four environments. The average HD of Ae. umbellulata was significantly longer than that of three common wheat cultivars (180.9 d vs. 137.0 d), with the exception of PI226500 (138.9 d). The Ae. umbellulata accessions also showed high variability in Fe (69.74–348.09 mg kg–1) and Zn (49.83–101.65 mg kg–1) contents. Three accessions (viz., PI542362, PI542363, and PI554399) showed relatively higher Fe (230.96–348.09 mg kg–1) and Zn (92.46–101.65 mg kg–1) contents than the others. The Fe content of Ae. umbellulata was similar to those of Ae. comosa and Ae. markgrafii but higher than those of Ae. tauschii and common wheat. Aegilops umbellulata showed a higher Zn content than Ae. tauschii, Ae. comosa, and common wheat, but a lower content than Ae. markgrafii. Furthermore, Ae. umbellulata had the highest proportion of γ-gliadin among all the species investigated (Ae. umbellulata vs. other species=mean 72.11% vs. 49.37%; range: 55.33–86.99% vs. 29.60–67.91%). These results demonstrated that Ae. umbellulata exhibits great diversity in the investigated traits, so it can provide a potential gene pool for the genetic improvement of these traits in wheat.
The B-box (BBX) family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini. BBX proteins play crucial roles in various aspects of plant growth and development, including seedling photomorphogenesis, shade avoidance, flowering time, and biotic and abiotic stress responses. Previous studies have identified many different BBXs from several plant species, although the BBX family members in maize are largely unknown. Genome-wide identification and comprehensive analysis of maize BBX (ZmBBX) expression and interaction networks would therefore provide valuable information for understanding their functions. In this study, 36 maize BBXs in three major clades were identified. The ZmBBXs within a given clade were found to share similar domains, motifs, and genomic structures. Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication. The expression levels of ZmBBXs were analyzed in various organs and tissues, and under different abiotic stress conditions. Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation (BiFC) assays. Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions
The research aimed to understand farmers’ willingness to adopt (WTA) and willingness to pay (WTP) for precision pesticide technologies and analyzed the determinants of farmers’ decision-making. We used a two-stage approach to consider farmers’ WTA and WTP for precision pesticide technologies. A survey of 545 apple farmers was administered in Bohai Bay and the Loess Plateau in China. The data were analyzed using the double-hurdle model. The results indicated that 78.72% of respondents were willing to apply precision pesticide technologies provided by service organizations such as cooperatives and dedicated enterprises, and 69.72% were willing to buy the equipment for using precision pesticide technologies. The results of the determinant analysis indicated that farmers’ perceived perceptions, farm scale, cooperative membership, access to digital information, and availability of financial services had significant and positive impacts on farmers’ WTA precision pesticide technologies. Cooperative membership, technical training, and adherence to environmental regulations increased farmers’ WTP for precision pesticide technologies. Moreover, nonlinear relationships between age, agricultural experience, and farmers’ WTA and WTP for precision pesticide technology services were found.