Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple
ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo
2023, 22 (7): 2080-2093.   DOI: 10.1016/j.jia.2023.05.024
Abstract241)      PDF in ScienceDirect      

Sucrose phosphate synthase (SPS) is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase (SPP) for sucrose synthesis, and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.  However, studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.  In the present study, a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.  The gene structures and their promoter cis-elements, protein conserved motifs, subcellular localizations, physiological functions and biochemical properties were analyzed.  A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication (WGD) and segmental duplication played vital roles in MdSPS gene family expansion.  The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.  Furthermore, three SPS gene subfamilies were classified based on phylogenetic relationships, and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.  In addition, a major gene related to sucrose accumulation (MdSPSA2.3) was identified according to the highly consistent trends in the changes of its expression in four apple varieties (‘Golden Delicious’, ‘Fuji’, ‘Qinguan’ and ‘Honeycrisp’) and the correlation between gene expression and soluble sugar content during fruit development.  Furthermore, the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.  The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.

Reference | Related Articles | Metrics

Diagnosis and characterization of the ribosomal DNA-ITS of potato rot nematode (Ditylenchus destructor) populations from Chinese medicinal herbs

NI Chun-hui, HAN Bian, LIU Yong-gang, Maria MUNAWAR, LIU Shi-ming, LI Wen-hao, SHI Ming-ming, LI Hui-xia, PENG De-liang
2023, 22 (6): 1763-1781.   DOI: 10.1016/j.jia.2022.08.126
Abstract181)      PDF in ScienceDirect      

The potato rot nematode (Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide.  In this study, 43 populations of Ddestructor were collected from different hosts across China, including 37 populations from Chinese herbal medicine plants.  Obtained sequences of ITS-rDNA and D2–D3 of 28S-rDNA genes of Ddestructor were compared and analyzed.  Nine types of significant length variations in ITS sequences were observed among all populations.  The differences in ITS1 length were mainly caused by the presence of repetitive elements with substantial base substitutions.  Reconstructions of ITS1 secondary structures showed that the minisatellites formed a stem structure.  Ten haplotypes were observed in all populations based on mutations and variations of helix H9.  Among them, 3 known haplotypes (A–C) were found in 7 populations isolated from potato, sweet potato, and Codonopsis pilosula, and 7 unique haplotypes were found in other 36 populations collected from Cpilosula and Angelica sinensis compared with 7 haplotypes (A–G) according to Subbotin’ system.  These unique haplotypes were different from haplotypes A–G, and we named them as haplotypes H–N.  The present results showed that a total of 14 haplotypes (A–N) of ITS-rDNA have been found in Ddestructor.  Phylogenetic analyses of ITS-rDNA and D2–D3 showed that all populations of Ddestructor were clustered into two major clades: one clade only containing haplotype A from sweet potato and the other containing haplotypes B–N from other plants.  For further verification, PCR-ITS-RFLP profiles were conducted on 7 new haplotypes.  Collectively, our study suggests that Ddestructor populations on Chinese medicinal materials are very different from those on other hosts and this work provides a paradigm for relevant researches.

Reference | Related Articles | Metrics

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein

SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong
2023, 22 (4): 1258-1265.   DOI: 10.1016/j.jia.2022.08.014
Abstract303)      PDF in ScienceDirect      

Aegilops umbellulata (UU) is a wheat wild relative that has potential use in the genetic improvement of wheat.  In this study, 46 Aeumbellulata accessions were investigated for stripe rust resistance, heading date (HD), and the contents of iron (Fe), zinc (Zn), and seed gluten proteins.  Forty-two of the accessions were classified as resistant to stripe rust, while the other four accessions were classified as susceptible to stripe rust in four environments.  The average HD of Aeumbellulata was significantly longer than that of three common wheat cultivars (180.9 d vs. 137.0 d), with the exception of PI226500 (138.9 d).  The Aeumbellulata accessions also showed high variability in Fe (69.74–348.09 mg kg–1) and Zn (49.83–101.65 mg kg–1) contents. Three accessions (viz., PI542362, PI542363, and PI554399) showed relatively higher Fe (230.96–348.09 mg kg–1) and Zn (92.46–101.65 mg kg–1) contents than the others.  The Fe content of Aeumbellulata was similar to those of Aecomosa and Aemarkgrafii but higher than those of Aetauschii and common wheat.  Aegilops umbellulata showed a higher Zn content than Aetauschii, Aecomosa, and common wheat, but a lower content than Aemarkgrafii.  Furthermore, Aeumbellulata had the highest proportion of γ-gliadin among all the species investigated (Aeumbellulata vs. other species=mean 72.11% vs. 49.37%; range: 55.33–86.99% vs. 29.60–67.91%).  These results demonstrated that Aeumbellulata exhibits great diversity in the investigated traits, so it can provide a potential gene pool for the genetic improvement of these traits in wheat.

Reference | Related Articles | Metrics
Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize
XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie
2023, 22 (2): 371-388.   DOI: 10.1016/j.jia.2022.08.091
Abstract526)      PDF in ScienceDirect      

The B-box (BBX) family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.  BBX proteins play crucial roles in various aspects of plant growth and development, including seedling photomorphogenesis, shade avoidance, flowering time, and biotic and abiotic stress responses.  Previous studies have identified many different BBXs from several plant species, although the BBX family members in maize are largely unknown.  Genome-wide identification and comprehensive analysis of maize BBX (ZmBBX) expression and interaction networks would therefore provide valuable information for understanding their functions.  In this study, 36 maize BBXs in three major clades were identified.  The ZmBBXs within a given clade were found to share similar domains, motifs, and genomic structures.  Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.  The expression levels of ZmBBXs were analyzed in various organs and tissues, and under different abiotic stress conditions.  Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation (BiFC) assays.  Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions

Reference | Related Articles | Metrics
Farmers’ precision pesticide technology adoption and its influencing factors: Evidence from apple production areas in China
YUE Meng, LI Wen-jing, JIN Shan, CHEN Jing, CHANG Qian, Glyn JONES, CAO Yi-ying, YANG Gui-jun, LI Zhen-hong, Lynn J. FREWER
2023, 22 (1): 292-305.   DOI: 10.1016/j.jia.2022.11.002
Abstract198)      PDF in ScienceDirect      

The research aimed to understand farmers’ willingness to adopt (WTA) and willingness to pay (WTP) for precision pesticide technologies and analyzed the determinants of farmers’ decision-making.  We used a two-stage approach to consider farmers’ WTA and WTP for precision pesticide technologies.  A survey of 545 apple farmers was administered in Bohai Bay and the Loess Plateau in China.  The data were analyzed using the double-hurdle model.  The results indicated that 78.72% of respondents were willing to apply precision pesticide technologies provided by service organizations such as cooperatives and dedicated enterprises, and 69.72% were willing to buy the equipment for using precision pesticide technologies.  The results of the determinant analysis indicated that farmers’ perceived perceptions, farm scale, cooperative membership, access to digital information, and availability of financial services had significant and positive impacts on farmers’ WTA precision pesticide technologies.  Cooperative membership, technical training, and adherence to environmental regulations increased farmers’ WTP for precision pesticide technologies.  Moreover, nonlinear relationships between age, agricultural experience, and farmers’ WTA and WTP for precision pesticide technology services were found.

Reference | Related Articles | Metrics
Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements
LI Wen-qian, HAN Ming-ming, PANG Dang-wei, CHEN Jin, WANG Yuan-yuan, DONG He-he, CHANG Yong-lan, JIN Min, LUO Yong-li, LI Yong, WANG Zhen-lin
2022, 21 (5): 1290-1309.   DOI: 10.1016/S2095-3119(20)63566-3
Abstract279)      PDF in ScienceDirect      
High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation.  However, excessive nitrogen and irrigation supplication increase the risk of lodging.  The main objectives of this work were to clarify the capacity of lodging resistance of wheat in response to nitrogen and irrigation, as well as to explore the effective ways of improving lodging resistance in a high-yield wheat cultivar. In this study, field experiments were conducted in the 2015–2016 and 2016–2017 growing seasons.  A wheat cultivar Jimai 22 (JM22), which is widely planted in the northern of Huang-Huai winter wheat region, was grown at Tai’an, Shandong Province, under three nitrogen rates and four irrigation treatments.  The lodging risk was increased with increased nitrogen rate, as indicated by increasing lodging index (LI) and lodging rate across both growing seasons.  With nitrogen increasing, the plant height, the basal internode length and the center of gravity height, which were positively correlated with LI, increased significantly.  While the density of the basal 2nd internode (for culm and leaf sheath) and cell wall component contents, which were negatively correlated with LI, decreased conspicuous along with nitrogen increased.  Increasing irrigation supplementation increased the 2nd internode culm wall thickness, breaking strength and leaf sheath density within limits which increased stem strength.  Among the treatments, nitrogen application at a rate of 240 kg ha–1 and irrigation application at 600 m3 ha–1 at both the jointing and anthesis stages resulted in the highest yield and strongest stem.  A suitable plant height ensures sufficient biomass for high yield, and higher stem stiffness, which was primarily attributed to thicker culm wall, greater density of the culm and leaf sheaths and higher cell wall component contents are the characteristics that should be taken into account to improving wheat lodging resistance.

Reference | Related Articles | Metrics
Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes
DU Qing-guo, YANG Juan, Shah SYED MUHAMMAD SADIQ, YANG Rong-xin, YU Jing-juan, LI Wen-xue
2021, 20 (8): 2043-2055.   DOI: 10.1016/S2095-3119(20)63220-8
Abstract204)      PDF in ScienceDirect      
Although previous researches have greatly increased our general knowledge on plant responses to nitrogen (N) stress, a comprehensive understanding of the different responses in crop genotypes is still needed.  This study evaluated 304 maize accessions for low-N tolerance under field conditions, and selected the low-N sensitive Ye478 and low-N tolerant Qi319 for further investigations.  After a 5-day low-N treatment, the typical N-deficient phenotype with yellowing older leaves was observed in Ye478 but not in Qi319.  After the 5-day low-N stress, 16 RNA libraries from leaf and root of Ye478 and Qi319 were generated.  The differentially expressed genes (DEGs) in the root of Qi319 up-regulated by special N deficiency were mainly enriched in energy-related metabolic pathways, including tricarboxylic acid metabolic process and nicotinamide metabolic process.  Consistent with yellowing older leaves only observed in Ye478, the special N deficiency-responsive DEGs related to thylakoid, chloroplast, photosynthetic membrane, and chloroplast stroma pathways were repressed by low-N stress in Ye478.  A total of 216 transcription factors (TFs), including ZmNLP5, were identified as special N deficiency-responsive TFs between Qi319 and Ye478, indicating the importance of transcriptional regulation of N stress-responsive pathway in different tolerance to low-N stress between crop genotypes.  In addition, 15 miRNAs were identified as DEGs between Qi319 and Ye478.  Taken together, this study contributes to the understanding of the genetic variations and molecular basis of low-N tolerance in maize.
Reference | Related Articles | Metrics
Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding
REN Yun, CHEN Dan, LI Wen-jie, TAO Luo, YUAN Guo-qiang, CAO Ye, LI Xue-mei, DENG Qi-ming, WANG Shi-quan, ZHENG Ai-ping, ZHU Jun, LIU Huai-nian, WANG Ling-xia, LI Ping, LI Shuang-cheng
2021, 20 (1): 35-45.   DOI: 10.1016/S2095-3119(20)63256-7
Abstract226)      PDF in ScienceDirect      
Hybrid rice significantly contributes to the food supply worldwide.  Backbone parents play important roles in elite hybrid rice breeding systems.  In this study, we performed pedigree-based analysis of the elite backbone parent rice variety, namely, Shuhui 527 (SH527, Oryza sativa), to exploit key genome regions during breeding.  Twenty-four cultivars (including SH527, its six progenitors and 17 derived cultivars) were collected and analyzed with high-density single nucleotide polymorphism (SNP) array.  Scanning all these cultivars with genome-wide SNP data indicated the unique contributions of progenitors to the SH527 genome and identified the key genomic regions of SH527 conserved within all its derivatives.  These findings were further supported by known rice yield-related genes or unknown QTLs identified by genome-wide association study.  This study reveals several key regions for SH527 and provides insights into hybrid rice breeding.
 
Reference | Related Articles | Metrics
Concentration difference of auxin involved in stem development in soybean
JIANG Zhen-feng, LIU Dan-dan, WANG Tian-qiong, LIANG Xi-long, CUI Yu-hai, LIU Zhi-hua, LI Wen-bin
2020, 19 (4): 953-964.   DOI: 10.1016/S2095-3119(19)62676-6
Abstract169)      PDF in ScienceDirect      
Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture.  Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance.  Yet the mechanisms behind are unclear in soybean.  To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin.  Distribution of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and methylindole-3-acetic acid (Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism.  The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient.  Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid (IPA) to IAA were three primary IAA synthesis pathways.  Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference.  All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth.  The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.
Reference | Related Articles | Metrics
The chemical treatments combined with antagonistic yeast control anthracnose and maintain the quality of postharvest mango fruit
SHAO Yuan-zhi, ZENG Jiao-ke, TANG Hong, ZHOU Yi, LI Wen
2019, 18 (5): 1159-1169.   DOI: 10.1016/S2095-3119(18)62128-8
Abstract174)      PDF in ScienceDirect      
During the storage and transportation of the mango fruit, the major source of disease is anthracnose, caused by the fungus Colletotrichum gloeosporioides.  The objective of this study is to find an appropriate method that not only reduces mango decay but also maintains its postharvest quality.  The effects of chemicals, the use of the yeast species Metschnikowia pulcherrima and their combination on storage quality, focusing on the enzyme activity related to disease of Tainong mangos was studied.  By immersing the mangoes in M. pulcherrima suspension (1.0×108 cfu mL–1), salicylic acid (SA) solution (50 mg L–1) or calcium chloride (CaCl2) solution (1.0 g L–1), the lesion expansion and decay of the mango fruit caused by C. gloeosporioides could be significantly delayed.  These treatments also delayed the changes in quality traits (a* value, firmness, contents of total soluble solids (TSS) and vitamin C (Vc), while the activities of anti-disease enzymes such as polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), chitinase (CHT) and β-1,3-glucanase (GUN) were enhanced as compared to the control treatment.  Furthermore, the combination of SA solution, CaCl2 solution and M. pulcherrima suspension presented an additive effect, increasing the efficacy in controlling the disease and maintaining the storage quality of mango fruits.  Taken together, our data suggest that the integration of chemical treatments combined with M. pulcherrima could be an alternative to the use of fungicides in postharvest treatment of the mango fruit, specifically for improving storage quality as well as the control of the anthracnose.
Reference | Related Articles | Metrics
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen
2019, 18 (11): 2571-2578.   DOI: 10.1016/S2095-3119(19)62557-8
Abstract130)      PDF in ScienceDirect      
Cyantraniliprole is a novel anthranilic diamide insecticide with significant efficacy against Bemisia tabaci, an important pest insect worldwide.  In this study, we conducted reversion and selection work and genetic analysis, and determined cross-resistance spectrum and synergism of cyantraniliprole resistance based on the reported population, SX population, of B. tabaci collected from Shanxi Province, China.  Compared with a susceptible strain (MED-S), SX population, the field-evolved cyantraniliprole-resistant population exhibited 26.4-fold higher resistance to cyantraniliprole.  In SX, a sharp decline of cyantraniliprole resistance was shown in the absence of selection.  Another tested strain, SX-R, was established from SX population after successive selection with cyantraniliprole and recently developed 138.4-fold high resistance to cyantraniliprole.  SX-R had no cross-resistance to abamectin, imidacloprid, thiamethoxam, sulfoxaflor, or bifenthrin.  Genetic analysis illustrated that cyantraniliprole resistance in SX-R was autosomally inherited and incompletely dominant.  Additionally, piperonyl butoxide (PBO) significantly inhibited cyantraniliprole resistance in the SX-R strain.  In conclusion, the selection of SX with cyantraniliprole led to high resistance to cyantraniliprole which is incompletely dominant and no cross-resistance to several common types of insecticides.  Enhanced oxidative metabolism is possibly involved in the resistance of SX-R, yet target-site resistance could not be excluded. 
Reference | Related Articles | Metrics
Nectar secretion of RN-type cytoplasmic male sterility three lines in soybean [Glycine max (L.) Merr.]
ZHANG Jing-yong, SUN Huan, ZHAO Li-mei, ZHANG Chun-bao, YAN Hao, PENG Bao, LI Wen-bin
2018, 17 (05): 1085-1092.   DOI: 10.1016/S2095-3119(18)61910-0
Abstract520)      PDF in ScienceDirect      
Significant progress has been achieved in the use of heterosis in soybean and several soybean hybrids have been released in China. However, broad use of hybrid soybean seed is limited due to low seed setting of female parents.  Breeding cytoplasmic male sterile (CMS) lines with high out-crossing rate is necessary to solve the problem.  The objective of this study was to determine the relationship between out-crossing rate of CMS lines and their nectar secretion.  The daily nectar secretion rhythm, meteorological effect on nectar secretion, and differences in nectar secretion among genotypes and years were investigated in 27 soybean CMS lines (A-lines) with their maintainers (B-lines) and restorers (R-lines).  The correlation between out-crossing rate of CMS lines and nectar production was also evaluated.  Nectar secretion had diurnal variation.  Secretion initiated at about 06:00 for most materials and reached a peak at 07:00–08:30 after flower opened, then the nectar secretion decreased gradually.  A sub-peak appeared at about 13:00, while the nectar could not be detected at 17:00.  Nectar secretion was greatly influenced by the weather conditions.  The amount of nectar secretion increased gradually over time during periods of high temperature and no rainfall for several days.  Rainy weather and low temperatures inhibited nectar secretion.  There were obvious variations of nectar amount among different genotypes tested.  Significant nectar variation within a genotype among years was also observed, and the highest nectar secretion was 3-fold higher than the lowest.  The amount of nectar secretion from R-lines was significantly higher than that of A- and B-lines.  There was no significant difference in nectar secretion between A- and B-lines.  A- and B-lines with higher out-crossing rates secreted more nectar.  The amount of nectar secretion of A- and B-lines were significantly positively correlated with the out-crossing rate of A-lines.
Reference | Related Articles | Metrics
Characterization and expression analysis of a novel RING-HC gene, ZmRHCP1, involved in brace root development and abiotic stress responses in maize
LI Wen-lan, SUN Qi, LI Wen-cai, YU Yan-li, ZHAO Meng, MENG Zhao-dong
2017, 16 (09): 1892-1899.   DOI: 10.1016/S2095-3119(16)61576-9
Abstract721)      PDF in ScienceDirect      
   RING is a really interesting new gene which plays important regulatory roles in many developmental processes as well as in plant-environment interactions. In the present report, the ZmRHCP1 gene encoding a putative RING-HC protein was isolated from maize and characterized. The ZmRHCP1 protein contained 310 amino acid residues with a conserved RING-HC zinc-finger motif and two transmembrane (TM) domains. ZmRHCP1 was expressed ubiquitously in various organs (root, stem, leaf, seedling, immature ear, and tassel), but its transcript levels were higher in vegetative organs than in reproductive organs. Moreover, the expression pattern of ZmRHCP1 in brace roots indicated that ZmRHCP1 functions in brace root initiation. In addition, ZmRHCP1 expression was regulated by abiotic stresses. The expression results suggested that ZmRHCP1 plays important roles in brace root development and abiotic stress responses. The findings of the present study provide important information to help us understand the function of ZmRHCP1 in maize.
Reference | Related Articles | Metrics
Field evaluation of Streptomyces rubrogriseus HDZ-9-47 for biocontrol of Meloidogyne incognita on tomato
JIN Na, XUE Hui* LI Wen-jing, WANG Xue-yan, LIU Qian, LIU Shu-sen, LIU Pei, ZHAO Jian-long, JIAN Heng
2017, 16 (06): 1347-1357.   DOI: 10.1016/S2095-3119(16)61553-8
Abstract814)      PDF in ScienceDirect      
Streptomyces rubrogriseus HDZ-9-47, isolated from eggs of Meloidogyne spp., was evaluated as a potential biocontrol agent of Meloidogyne incognita under in vitro and protective field.  Microscopic observations showed that HDZ-9-47 parasitized eggs of M. incognita within 7 days.  In vitro, the culture filtrate of HDZ-9-47 caused 97.0% mortality of second-stage juveniles (J2s) of M. incognita and inhibited more than 50% egg hatching.  In the field, compared with the control, the root-knot index and J2s density in the treatment of drench the broth contained 1012 HDZ-9-47 spores were respectively reduced by 51.1 and 80.7% at 90 days post transplantation, which were better than that in other application doses and methods.  In addition, reduction rates of root-knot index and J2s density of the treatment of combined application of HDZ-9-47 with biofumigation was 87.1 and 91.0%, respectively, better than either of HDZ-9-47 or biofumigation used alone or fosthiazate treatment.  And tomato yield also increased by 16.1%.  Together, our results suggest that HDZ-9-47 could be an effective biocontrol agent of M. incognita, and that application of HDZ-9-47 combined with cabbage residue biofumigation was a promising and sustainable option for M. incognita control.
Reference | Related Articles | Metrics
Genetic dissection of the sensory and textural properties of Chinese white noodles using a specific RIL population
LI Wen-jing, DENG Zhi-ying, CHEN Guang-feng, CHEN Fang, LI Xing-feng, TIAN Ji-chun
2017, 16 (02): 454-463.   DOI: 10.1016/S2095-3119(16)61412-0
Abstract1340)      PDF in ScienceDirect      
To dissect the genetic control of the sensory and textural quality traits of Chinese white noodles, a population of recombinant inbred lines (RILs), derived from the cross of waxy wheat Nuomai 1 (NM1) and Gaocheng 8901 (Gc8901), was used.  The RILs were tested in three different environments to determine the role of environmental effects on quantitative trait loci (QTL) analysis.  A total of 45 QTLs with additive effects for 17 noodle sensory and textural properties under three environments were mapped on 15 chromosomes.  These QTLs showed 4.23–42.68% of the phenotypic variance explained (PVE).  Nineteen major QTLs were distributed on chromosomes 1B, 1D, 2A, 3B, 3D, 4A, and 6A, explaining more than 10% of the phenotypic variance (PV).  Clusters were detected on chromosomes 2B (3 QTLs), 3B (11 QTLs) and 4A (5 QTLs).  The cluster detected on chromosome 4A was close to the Wx-B1 marker.  Five co-located QTLs with additive effects were identified on chromosomes 2B, 3D, 4A, 6A, and 7B.  The two major QTLs, Qadh.sdau-3B.1 and Qspr.sdau-3B.1, in cluster wPt666008–wPt5870 on chromosome 3B were detected in three different environments, which perhaps can be directly applied to improve the textural properties of noodles.  These findings could offer evidence for the selection or development of new wheat varieties with noodle quality using molecular marker-assisted selection (MAS).
Reference | Related Articles | Metrics
Functional identification of phenazine biosynthesis genes in plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae
LI Wen, XU You-ping, Jean-Pierre Munyampundu, XU Xin, QI Xian-fei, GU Yuan, CAI Xin-zhong
2016, 15 (4): 812-821.   DOI: 10.1016/S2095-3119(15)61176-5
Abstract1869)      PDF in ScienceDirect      
Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identified phenazine biosynthesis (phz) genes in two genome-completed plant pathogenic bacteria Pseudomonas syringae pv. tomato (Pst) DC3000 and Xanthomonas oryzae pv. oryzae (Xoo) PXO99A. Unlike the phz genes in typical phenazine-producing pseudomonads, phz homologs in Pst DC3000 and Xoo PXO99A consisted of phzC/D/E/F/G and phzC/E1/E2/F/G, respectively, and the both were not organized into an operon. Detection experiments demonstrated that phenazine-1-carboxylic acid (PCA) of Pst DC3000 accumulated to 13.4 μg L–1, while that of Xoo PXO99A was almost undetectable. Moreover, Pst DC3000 was resistant to 1 mg mL–1 PCA, while Xoo PXO99A was sensitive to 50 μg mL–1 PCA. Furthermore, mutation of phzF blocked the PCA production and significantly reduced the pathogenicity of Pst DC3000 in tomato, while the complementary strains restored these phenotypes. These results revealed that Pst DC3000 produces low level of and is resistant to phenazines and thus is unable to be biologically controlled by phenazines. Additionally, phz-mediated PCA production is required for full pathogenicity of Pst DC3000. To our knowledge, this is the first report of PCA production and its function in pathogenicity of a plant pathogenic P. syringae strain.
Reference | Related Articles | Metrics
Relative bioavailability of tribasic zinc sulfate for broilers fed a conventional corn-soybean meal diet
LI Wen-xiang, MA Xin-yan, LU Lin, ZHANG Li-yang, LUO Xu-gang
2015, 14 (10): 2042-2049.   DOI: 10.1016/S2095-3119(15)61033-4
Abstract1656)      PDF in ScienceDirect      
An experiment was carried out to investigate the relative bioavailability of tribasic zinc (Zn) sulfate relative to Zn sulfate for broilers fed a conventional corn-soybean meal diet. A total of 504 1-d-old Arbor Acres commercial male chicks were randomly assigned by body weight of birds to one of seven treatments involving a 2×3 factorial arrangement with three levels of added Zn (30, 60, or 90 mg of Zn kg–1) and two Zn sources (tribasic Zn sulfate and Zn sulfate) plus a control with no added Zn for an experimental phase of 14 d. Plasma Zn, tibia ash Zn, pancreas Zn, and pancreas metallothionein (MT) messenger RNA (mRNA) were analyzed at 6 or 14 d of age post-hatching. The results showed that plasma Zn, tibia ash Zn, pancreas Zn, and pancreas MT mRNA increased linearly (P<0.002) as dietary Zn concentration increased at 6 or 14 d of age. The R2 for a linear model was greater on d 6 than on d 14 for the above 4 responsive criteria, and among these indices, the fitting of the tibia ash Zn concentration was the best (R2=0.99). Therefore, based on slope ratios from the multiple linear regressions of the above 4 indices of the birds at 6 d of age on daily intake of dietary Zn, the bioavailabilities of tribasic Zn sulfate relative to Zn sulfate (100%) were 95.6% (P=0.18), 83.5% (P=0.01), 87.9% (P=0.53), and 75.9% (P=0.38) for the tibia ash Zn, pancreas Zn, plasma Zn, and pancreas MT mRNA, respectively. The results indicated that generally, Zn from tribasic Zn sulfate was as available as Zn from Zn sulfate for broilers.
Reference | Related Articles | Metrics
Climate Change Impact and Its Contribution Share to Paddy Rice Production in Jiangxi, China
LI Wen-juan, TANG Hua-jun, QIN Zhi-hao, YOU Fei, WANG Xiu-fen, CHEN Chang-li, JI Jian-hua , LIU Xiu-mei
2014, 13 (7): 1565-1574.   DOI: 10.1016/S2095-3119(14)60811-X
Abstract1387)      PDF in ScienceDirect      
In the study, an improved approach was proposed to identify the contribution shares of three group factors that are climate, technology and input, social economic factors by which the grain production is shaped. In order to calibrate the method, Jiangxi Province, one of the main paddy rice producers in China was taken as an example. Based on 50 years (1961-2010) meteorological and statistic data, using GIS and statistical analysis tools, the three group factors that in certain extent impact China’s paddy rice production have been analyzed quantitatively. The individual and interactive contribution shares of each factor group have been identified via eta square (η2). In the paper, two group ordinary leasr square (OLS) models, paddy models and climate models, have been constructed for further analysis. Each model group consists of seven models, one full model and six partial models. The results of paddy models show that climate factors individually and interactively contribute 11.42-15.25% explanatory power to the variation of paddy rice production in the studied province. Technology and input factors contribute 16.17% individually and another 8.46% interactively together with climate factors, totally contributing about 25%. Social economic factors contribute about 7% of which 4.65% is individual contribution and 2.49% is interactive contribution together with climate factors. The three factor groups individually contribute about 23% and interactively contribute additional 41% to paddy rice production. In addition every two of the three factor groups also function interactively and contribute about 22%. Among the three factor groups, technology and input are the most important factors to paddy rice production. The results of climate models support the results of paddy models, and display that solar radiation (indicated by sunshine hour variable) is the dominate climate factor for paddy rice production.
Reference | Related Articles | Metrics
GmPHR1, a Novel Homolog of the AtPHR1 Transcription Factor, Plays a Role in Plant Tolerance to Phosphate Starvation
LI Xi-huan, WANG Yun-jie, WU Bing, KONG You-bin, LI Wen-long, CHANG Wen-suo , ZHANG Cai-ying
2014, 13 (12): 2584-2593.   DOI: 10.1016/S2095-3119(14)60775-9
Abstract1900)      PDF in ScienceDirect      
GmPHR1 from soybean (Glycine max) was isolated and characterized. This novel homolog of the AtPHR1 transcription factor confers tolerance to inorganic phosphate (Pi)-starvation. The gene is 2751 bp long, with an 819-bp open reading frame and five introns. Analysis of transcription activity in yeast revealed that the full-length GmPHR1 and its C-terminal activate the reporter genes for His, Ade and Ura, suggesting that the C-terminal peptide functions as a transcriptional activator. Quantitative real-time PCR indicated that patterns of GmPHR1 expression differed. For example, under low-Pi stress, this gene was quickly induced in the tolerant JD11 after 0.5 h, with expression then decreasing slowly before peaking at 12-24 h. By contrast, induction in the sensitive Niumaohuang (NMH) was slow, peaking at 6 h before decreasing quickly at 9 h. GmPHR1 showed sub-cellular localization in the nuclei of onion epidermal cells and Arabidopsis roots. Growth parameters in wild-type (WT) Arabidopsis plants as well as in overexpression (OE) transgenic lines were examined. Under low-Pi conditions, values for shoot, root and whole-plant dry weights, root to shoot ratios, and lengths of primary roots were significantly greater in OE lines than in the WT. These data demonstrate that GmPHR1 has an important role in conferring tolerance to phosphate starvation.
Reference | Related Articles | Metrics
MicroRNA Primary Transcripts and Promoter Elements Analysis in Soybean (Glycine max L. Merril.)
LI Jing, LIU Yong-xin, HAN Ying-peng, LI Yong-guang, GUO Mao-zu , LI Wen-bin
2013, 12 (9): 1522-1529.   DOI: 10.1016/S2095-3119(13)60500-6
Abstract1797)      PDF in ScienceDirect      
The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5´ rapid amplification of cDNA ends (5´ RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5´ to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNAmediated regulatory pathways and networks in soybean.
Reference | Related Articles | Metrics
General Nexus Between Water and Electricity Use and Its Implication for Urban Agricultural Sustainability: A Case Study of Shenzhen, South China
LI Wen-jiang, LI Lin-jun , QIU Guo-yu
2013, 12 (8): 1341-1349.   DOI: 10.1016/S2095-3119(13)60547-X
Abstract2114)      PDF in ScienceDirect      
Although water and energy resources are well-recognized concerns regarding economic and social development sustainability, little specific research has focused on both water and energy problems at the same time. This study analyzed the water and electricity-use patterns in Shenzhen, South China during 2001-2009. A curve regression method was used to examine the relationship between water and electricity use per gross domestic product (GDP) in Shenzhen and its three sectors, i.e., agriculture, industry & construction, and residential life & services. Results showed that agriculture only covered less than 10% of water and electricity use in Shenzhen, while industry & construction and residential life & services accounted for more than 90% of water and electricity use in Shenzhen, which coincided with the city’s industrial structure. The water and electricity use per GDP in agriculture was the biggest among three sectors in Shenzhen during 2001-2009, which means inefficiency of water and electricity use in agriculture. Due to transitioning to advanced materials and manufacturing, both water and electricity use per GDP in industry & construction decreased during 2001-2009 and their utilization efficiencies gradually increased over time. The same held true for those in residential life & services transformed toward modern business, creative culture, finance services, etc. Derived from the survival of the fittest in competing for limited water and electricity resources, agriculture in Shenzhen has been gradually substituted by industry & construction and residential life & services, with much higher efficiencies of water and electricity use. And traditional agriculture will not be sustainable in the process of urbanization and industrialization, except high-tech intensive agriculture with low water and energy cost. Furthermore, by means of curve regression, we found that there was a significant quadratic relationship between water use per GDP and electricity use per GDP in the entire city and its three sectors. Suitable industrial transformation and advancement was a very effective way to save water and energy for modern cities. This can provide some reference for systematic planning and design of water and electricity allocation and use in agriculture, industry & construction and residential life & services in a city.
Reference | Related Articles | Metrics
Relationships Between C4 Enzyme Activities and Yield in Soybeans (Glycine max (L.) Merr.)
HUANG Shan-shan, LI Chang-suo, YANG Ming-liang, LI Wen-bin , WANG Ji-an
2013, 12 (3): 406-413.   DOI: 10.1016/S2095-3119(13)60240-3
Abstract1336)      PDF in ScienceDirect      
To study the relationships between C4 enzyme activities and yield, C4 enzyme activities (phosphoenolpyruvate carboxylase (PEPCase), NADP-malate dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK)) in different organs of ten soybean cultivars with different yields were measured at different growth stages in China. The result showed that four enzyme activities in C4 pathway were obviously different among cultivars, especially PPDK activity was not detected in the leaves of Dongnong 1567 and Dongnong 1068 and the young leaves of Gongjiao 9107-1 and Dongnong 97-172, but there were weak activities in pod coats. The order of C4 enzyme activities is young leaves < old leaves < pod coats. The correlation coefficients between PEPCase activity and yield and between NADP-MDH activity at blooming stage and yield were 0.6979 and 0.6565, respectively, and both reached the significant level (5%), and PEPCase activity kept significant positive correlation with plant photosynthetic rate. There was a negative correlation between NADP-ME activity and yield, and no correlation was found between PPDK activity and yield.
Reference | Related Articles | Metrics
Comparative Study on the Expression of Genes Involved in Carotenoid and ABA Biosynthetic Pathway in Response to Salt Stress in Tomato
DUAN Hui-kun, ZHU Yan, LI Wen-long, HUA Xue-jun, LIU Yong-xiu, DENG Xin
2012, 12 (7): 1093-1102.   DOI: 10.1016/S1671-2927(00)8634
Abstract1360)      PDF in ScienceDirect      
1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R.China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R.China 3 Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R.China Carotenoid biosynthetic pathway produces not only pigments that protect photosynthetic system against photo-oxidative damage, but also precursors of abscisic acid, the major hormone regulates stress responses. To understand the response of carotenoid biosynthetic pathway to salt stress, the expression of the genes involved in carotenoid and ABA biosynthesis were compared in cultivated tomato Solanum lycopersicon cv. Moneymaker and its relative wild genotype S. pimpinellifolium (PI365967) together with the contents of carotenoids and ABA. The results showed that 11 of the 15 genes investigated were up-regulated and four unaltered in Moneymaker after 5 h of salt stress; whereas only four genes were up-regulated, four unaltered, and seven down-regulated in PI365967 after stress. Further comparison revealed that 11 salinity-induced genes were expressed significantly lower in Moneymaker than in PI365967 under normal condition, and 8 of them were induced to similar levels after salt stress. In consistence, ABA level was doubled in Moneymaker but kept consistent in PI365967 after salt stress, though the contents of neoxanthin, violaxanthin, β-carotene, lutein, and total carotenoids were kept unchanged in both species. Since it is known that PI365967 is more tolerant to salt stress than Moneymaker, we proposed that the constitutive high level of carotenoid and ABA biosynthetic pathway under normal growth condition could be benefit to PI365967 for establishing the early response to salt stress. In addition, CrtR-b1 and CrtR-b2 that encode β-carotenoid hydroxylases were the only genes in carotenoid biosynthetic pathway that were up-regulated by salt stress in both species. The CrtR-b2 gene was cloned from both species and no essential difference was found in the encoded amino acid sequences. Transformation of CrtR-b2 to tobacco improved the seed germination under salt stress condition, indicating that the hydrolysis of β-carotenoid is the target of transcriptional regulation of the carotenoid biosynthesis in both tomato cultivar and wild relative.
Reference | Related Articles | Metrics
A Modified Method for the Development of SSR Molecular Markers Based on Redundant EST Data and Its Application in Soybean
ZHAO Xue, CHANG Wei, HAN Ying-peng, TENG Wei-li , LI Wen-bin
2012, 12 (4): 545-555.   DOI: 10.1016/S1671-2927(00)8574
Abstract1538)      PDF in ScienceDirect      
EST-derived SSR marker has been developed in many species, but few methods of high efficiency have been reported for the exploitation of EST-SSR markers. Thus, a high efficiency method for mining millions of redundant EST data is needed. A modified method for the EST-SSR development with high efficiency was established based on the redundant EST data of soybean in this study. The method achieved its function through classifying ESTs according to the same SSR motif and detected candidate loci with redundant sequences. In this study, a total of 80 polymorphic EST-SSR markers of soybean were developed, 50 of them were exploited by this modified method which proved the higher speed and efficiency of this method. All the 80 polymorphic EST-SSRs were mapped on soybean physical map through in silico mapping and 15 markers were integrated on a genetic map constructed in previous study. A software named hpSSR (high polymorphic SSR) was programmed based on the concept of the up-built method for EST-SSR development. This method is not only pragmatic for EST-SSR exploitation in soybean, but also effective for the development of the marker in other species if the redundancy EST data is available.
Reference | Related Articles | Metrics
Identification of QTLsAssociated with Total SoyasaponinContent in Soybean (Glycine max (L.) Merr.)
HUANG Shan-shan, HAN Ying-peng, LI Chang-suo, TIAN Jun, LI Wen-bin, WANG Ji-an
2012, 12 (12): 1976-1984.   DOI: 10.1016/S1671-2927(00)8734
Abstract1200)      PDF in ScienceDirect      
Soyasaponins are valuable compounds in certain drugs, industry, food additives and surfactants. Selecting cultivars with higher-soyasaponin content along with agronomic traits is a main goal for many soybean breeders. The aim of the present study was to identify the quantitative trait loci (QTLs) associated with total soyasaponin content through a F2 population, which was derived from a cross between Ha 91016 (higher soyasaponin content cultivar, 16.8 mg g-1) and N98-9445A (lower soyasaponin content, only 5.7 mg g-1). A genetic linkage map including a total of 162 simple sequence repeat markers was constructed, which covered the total length 2 735.5 cM, and the average distance between markers was 16.96 cM. Two QTLs associated with total soyasaponin content were identified. One, qSAP_1 (located in sat_044-satt102 of linkage group (LG) K), could explain 12.6% of phenotypic variance. The other, qSAP_2, was located between satt368 and sat_413 of LG D1a, which could explain 15.8% of phenotypic variance. It was concluded that the two QTLs would have some potential value for marker-assisted selection for high-soyasaponin content breeding in soybeans.
Reference | Related Articles | Metrics
Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)
DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren
2012, 12 (12): 1933-1939.   DOI: 10.1016/S1671-2927(00)8729
Abstract1879)      PDF in ScienceDirect      
A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
Reference | Related Articles | Metrics
Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maize Growth and Nitrogen Uptake in Northeast China
LIU Hai-long, YANG Jing-yi, HE Ping, BAI You-lu, JINJi-yun , Craig FDrury, ZHUYe-ping , YANG Xue-ming, LI Wen-juan, XIE Jia-gui, YANGJing-min , Gerrit Hoogen boom
2012, 12 (11): 1898-1913.   DOI: 10.1016/S1671-2927(00)8726
Abstract1648)      PDF in ScienceDirect      
Crop models can be useful tools for optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N uptake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-1). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.
Reference | Related Articles | Metrics
In silico Detection of Novel MicroRNAs Genes in Soybean Genome
LIU Yong-xin, CHANG Wei, HAN Ying-peng, ZOU Quan, GUO Mao-zu , LI Wen-bin
2011, 10 (9): 1336-1345.   DOI: 10.1016/S1671-2927(11)60126-0
Abstract1837)      PDF in ScienceDirect      
The importance of microRNAs (miRNAs) at the post-transcriptional regulation level has recently been recognized in bothanimals and plants. In this study, the simple and most effective method of comparative genomic approach was used. Firstknown plants miRNAs BLAST against the soybean genome, and then the located candidates were searched for novelmiRNAs by RNA folding method in the vicinity (±400 nt) of the candidates. The results showed that a total of 521 novelsoybean miRNA genes, including 236 mature miRNAs, were identified. All these mature miRNAs were grouped into 58families, of which 21 of them were novel family in soybean. The upstream 2 000 nt of potential pre-miRNAs was used forpromoter prediction, in order to investigate prediction of miRNAs and detect transcript unit and clustering. In this study,miRNA genes less tend to be present as clusters in soybean. Only 9 clusters, containing 21 miRNA genes (accounted for4.0% of the total), were observed as part of polycistronic transcripts. Detailed analysis of sequence characteristics ofnovel miRNAs in soybean and all previous known plants miRNAs, were carried out. These results of this study providea reference point for further study on miRNAs identification in plants, and improve the understanding of genome insoybean.
Reference | Related Articles | Metrics
Actin and Myosin Co-Localize in Plasmodesmata and Ectodesmata-Like Structure
DONG Yu, LIU Na, LIU Gang, LI Wen-long, YAN Ai-hua and WANG Dong-mei
2011, 10 (6): 845-849.   DOI: 10.1016/S1671-2927(11)60070-9
Abstract3041)      PDF in ScienceDirect      
Actin and myosin were found to be associated with the cytoplasmic sleeve of plasmodesmata. As cytoskeletal proteins, actin and myosin are believed to regulate the conductivity of plasmodesmata (PDs) in higher plants. Using immunocytochemical methods, we found the two proteins to be co-localized - and closely linked to each other - in plasmodesmata and ectodesmata-like structure in ageing parenchymatous cells of Allium sativum L. We suggest that intercellular communication is affected by the interaction between actin and myosin.
Reference | Related Articles | Metrics