Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (2): 389-397    DOI: 10.1016/S2095-3119(14)60772-3
Soil & Fertilization · Irrigation · Agro-Ecology & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Inoculation with chlamydospores of Trichoderma asperellum SM- 12F1 accelerated arsenic volatilization and influenced arsenic availability in soils
 WANG Xiu-rong, SU Shi-ming, ZENG Xi-bai, BAI Ling-yu, LI Lian-fang, DUAN Ran, WANG Ya-nan, WU Cui-xia
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Fungi capable of arsenic (As) accumulation and volatilization are hoped to tackle As-contaminated environment in the future. However, little data is available regarding their performances in field soils. In this study, the chlamydospores of Trichoderma asperellum SM-12F1 capable of As resistance, accumulation, and volatilization were inoculated into As-contaminated Chenzhou (CZ) and Shimen (SM) soils, and subsequently As volatilization and availability were assessed. The results indicated that T. asperellum SM-12F1 could reproduce well in As-contaminated soils. After cultivated for 42 days, the colony forming units (cfu) of T. asperellum SM-12F1 in CZ and SM soils reached 1010–1011 cfu g–1 fresh soil when inoculated at a rate of 5.0%. Inoculation with chlamydospores of T. asperellum SM-12F1 could significantly accelerate As volatilization from soils. The contents of volatilized As from CZ and SM soils after being inoculated with chlamydospores at a rate of 5.0% for 42 days were 2.0 and 0.6 μg kg–1, respectively, which were about 27.5 and 2.5 times higher than their corresponding controls of no inoculation (CZ, 0.1 μg kg–1; SM, 0.3 μg kg–1). Furthermore, the available As content in SM soils was decreased by 23.7%, and that in CZ soils increased by 3.3% compared with their corresponding controls. Further studies showed that soil pH values significantly decreased as a function of cultivation time or the inoculation level of chlamydospores. The pH values in CZ and SM soils after being inoculated with 5.0% of chlamydospores for 42 days were 6.04 and 6.02, respectively, which were lowered by 0.34 and 1.21 compared with their corresponding controls (CZ, 6.38; SM, 7.23). The changes in soil pH and As-binding fractions after inoculation might be responsible for the changes in As availability. These observations could shed light on the future remediation of As-contaminated soils using fungi.

Abstract  Fungi capable of arsenic (As) accumulation and volatilization are hoped to tackle As-contaminated environment in the future. However, little data is available regarding their performances in field soils. In this study, the chlamydospores of Trichoderma asperellum SM-12F1 capable of As resistance, accumulation, and volatilization were inoculated into As-contaminated Chenzhou (CZ) and Shimen (SM) soils, and subsequently As volatilization and availability were assessed. The results indicated that T. asperellum SM-12F1 could reproduce well in As-contaminated soils. After cultivated for 42 days, the colony forming units (cfu) of T. asperellum SM-12F1 in CZ and SM soils reached 1010–1011 cfu g–1 fresh soil when inoculated at a rate of 5.0%. Inoculation with chlamydospores of T. asperellum SM-12F1 could significantly accelerate As volatilization from soils. The contents of volatilized As from CZ and SM soils after being inoculated with chlamydospores at a rate of 5.0% for 42 days were 2.0 and 0.6 μg kg–1, respectively, which were about 27.5 and 2.5 times higher than their corresponding controls of no inoculation (CZ, 0.1 μg kg–1; SM, 0.3 μg kg–1). Furthermore, the available As content in SM soils was decreased by 23.7%, and that in CZ soils increased by 3.3% compared with their corresponding controls. Further studies showed that soil pH values significantly decreased as a function of cultivation time or the inoculation level of chlamydospores. The pH values in CZ and SM soils after being inoculated with 5.0% of chlamydospores for 42 days were 6.04 and 6.02, respectively, which were lowered by 0.34 and 1.21 compared with their corresponding controls (CZ, 6.38; SM, 7.23). The changes in soil pH and As-binding fractions after inoculation might be responsible for the changes in As availability. These observations could shed light on the future remediation of As-contaminated soils using fungi.
Keywords:  arsenic       volatilization       availability       soil       chlamydospores       T. asperellum SM-12F1  
Received: 30 November 2013   Accepted:
Fund: 

the financial support from the National Natural Science Foundation of China (41101296), and the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD14B02).

Corresponding Authors:  ZENG Xi-bai,Tel: +86-10-82105612, E-mail: zengxibai@caas.cn     E-mail:  zengxibai@caas.cn
About author:  WANG Xiu-rong, Tel: +86-10-82106009, E-mail: 124922870wxr@ sina.com; SU Shi-ming, Tel: +86-10-82106009, E-mail: sushiming@caas.cn; * These authors contributed equally to this study.

Cite this article: 

WANG Xiu-rong, SU Shi-ming, ZENG Xi-bai, BAI Ling-yu, LI Lian-fang, DUAN Ran, WANG Ya-nan, WU Cui-xia. 2015. Inoculation with chlamydospores of Trichoderma asperellum SM- 12F1 accelerated arsenic volatilization and influenced arsenic availability in soils. Journal of Integrative Agriculture, 14(2): 389-397.

Achal V, Pan X L, Fu Q L, Zhang D Y. 2012. Biomineralizationbased remediation of As (III) contaminated soil bySporosarcina ginsengisoli. Journal of Hazardous Materials,201, 178-184

?erňanský S, Kolen?ík M, Ševc J, Urík M, Hiller E 2009.Fungal volatilization of trivalent and pentavalent arsenicunder laboratory conditions. Bioresource Technology, 100,1037-1040

Dixit S, Hering J G. 2003. Comparison of arsenic (V) andarsenic (III) sorption onto iron oxide minerals: Implicationsfor arsenic mobility. Environmental Science & Technology,37, 4182-4189

Edvantoro B B, Naidu R, Megharaj M, Merrington G, SingletonI. 2004. Microbial formation of volatile arsenic in cattle dipsite soils contaminated with arsenic and DDT. Applied SoilEcology, 25, 207-217

Elad Y, Chet I. 1983. Improved selective media for isolationof Trichoderma spp. or Fusarium spp. Phytoparasitica,11, 55-58

Fayiga A O, Ma L Q. 2006. Using phosphate rock toimmobilize metals in soil and increase arsenic uptakeby hyperaccumulator Pteris vittata. Science of the TotalEnvironment, 359, 17-25

Gadd G M. 2004. Microbial influence on metal mobility andapplication for bioremediation. Geoderma, 122, 109-119

Huang H, Jia Y, Sun G X, Zhu Y G. 2012. Arsenic speciationand volatilization from flooded paddy soils amendedwith different organic matters. Environmental Science &Technology, 46, 2163-2168

Huang J H, Hu K N, Decker B. 2011. Organic arsenic in thesoil environment: speciation, occurrence, transformation,and adsorption behavior. Water, Air, & Soil Pollution, 219,401-415

Lewis J, Papavizas G. 1983. Production of chlamydosporesand conidia by Trichoderma spp. in liquid and solid growthmedia. Soil Biology and Biochemistry, 15, 351-357

Liu S, Zhang F, Chen J, Sun G X. 2011. Arsenic removalfrom contaminated soil via biovolatilization by geneticallyengineered bacteria under laboratory conditions. Journalof Environmental Sciences, 23, 1544-1550

Mestrot A, Feldmann J, Krupp E M, Hossain M S, Roman-RossG, Meharg A A. 2011. Field fluxes and speciation of arsinesemanating from soils. Environmental Science & Technology,45, 1798-1804

Mestrot A, Uroic M K, Plantevin T, Islam M R, Krupp E M,Feldmann J R, Meharg A A. 2009. Quantitative and qualitative trapping of arsines deployed to assess loss ofvolatile arsenic from paddy soil. Environmental Science &Technology, 43, 8270-8275

Papavizas G. 1982. Survival of Trichoderma harzianum in soiland in pea and bean rhizospheres. Phytopathology, 72,121-125

Pokhrel D, Viraraghvavan T. 2008. Arsenic removal from anaqueous solution by modified A. niger biomass: Batchkinetic and isotherm studies. Journal of HazardousMaterials, 150, 818-825

Qin J, Lehr C R, Yuan C, Le X C, McDermott T R, Rosen BP. 2009. Biotransformation of arsenic by a Yellowstonethermoacidophilic eukaryotic alga. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 106, 5213-5217

Sneh B, Dupler M, Elad Y, Baker R. 1984. Chlamydosporegermination of Fusarium oxysporum f. sp. cucumerinum asaffected by fluorescent and lytic bacteria from a Fusariumsuppressivesoil. Phytopathology, 74, 1115-1124

Srivastava P K, Vaish A, Dwivedi S, Chakrabarty D, Singh N,Tripathi R D. 2011. Biological removal of arsenic pollutionby soil fungi. Science of the Total Environment, 409,2430-2442

Su S M, Zeng X B, Bai L Y, Li L F, Duan R. 2011. Arsenicbiotransformation by arsenic-resistant fungi Trichodermaasperellum SM-12F1, Penicillium janthinellum SM-12F4,and Fusarium oxysporum CZ-8F1. Science of the TotalEnvironment, 409, 5057-5062

Su S M, Zeng X B, Jiang X L, Li L F. 2010. Bioaccumulationand biovolatilisation of pentavalent arsenic by Penicillinjanthinellum, Fusarium oxysporum and Trichodermaasperellum under laboratory conditions. CurrentMicrobiology, 61, 261-266

Su S M, Zeng X B, Li L F, Duan R, Bai L Y, Li A G, Wang J,Jiang S. 2012. Arsenate reduction and methylation in thecells of Trichoderma asperellum SM-12F1, Penicilliumjanthinellum SM-12F4, and Fusarium oxysporum CZ-8F1investigated with X-ray absorption near edge structure.Journal of Hazardous Materials, 243, 364-367

Tabak H H, Lens P, van Hullebusch E D, Dejonghe W. 2005.Developments in bioremediation of soils and sedimentspolluted with metals and radionuclides -1 Microbialprocesses and mechanisms affecting bioremediation ofmetal contamination and influencing metal toxicity andtransport. Reviews in Environmental Science and Bio/Technology, 4, 115-156

Wang P P, Sun G X, Jia Y, Meharg A A, Zhu Y G. 2013.A review on completing arsenic biogeochemical cycle:Microbial volatilization of arsines in environment. Journalof Environmental Sciences, 26, 371-381

Wang S L, Zhao X Y. 2009. On the potential of biologicaltreatment for arsenic contaminated soils and groundwater.Journal of Environmental Management, 90, 2367-2376

Wenzel W W, Kirchbaumer N, Prohaska T, Stingeder G, LombiE, Adriano D C. 2001. Arsenic fractionation in soils usingan improved sequential extraction procedure. AnalyticaChimica Acta, 436, 309-323

Woolson E, Axley J, Kearney P. 1971. Correlation betweenavailable soil arsenic, estimated by six methods, andresponse of corn (Zea mays L.). Soil Science Society ofAmerica Journal, 35, 101-105

Ye J, Rensing C, Rosen B P, Zhu Y G. 2012. Arsenicbiomethylation by photosynthetic organisms. Trends inPlant Science, 17, 155-162

Zeng X B, Su S M, Jiang X L, Li L F, Bai L Y, Zhang Y R. 2010.Capability of pentavalent arsenic bioaccumulation andbiovolatilization of three fungal strains under laboratoryconditions. CLEAN-Soil, Air, Water, 38, 238-241

Zhang J Y, Ding T D, Zhang C L. 2013. Biosorption andtoxicity responses to arsenite (As [III]) in Scenedesmusquadricauda. Chemosphere, 92, 1077-1084

Zhao F J, Zhu Y G, Meharg A A. 2013. Methylated arsenicspecies in rice: Geographical variation, origin, and uptakemechanisms. Environmental Science & Technology, 47,3957-3966

Zheng R L, Sun G X, Zhu Y G. 2013. Effects of microbialprocesses on the fate of arsenic in paddy soil. ChineseScience Bulletin, 58, 186-193
[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[3] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[4] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[5] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[6] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[7] CHEN Xu, HAN Xiao-zeng, WANG Xiao-hui, GUO Zhen-xi, YAN Jun, LU Xin-chun, ZOU Wen-xiu. Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1546-1559.
[8] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[9] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[10] XU Chun-mei, XIAO De-shun, CHEN Song, CHU Guang, LIU Yuan-hui, ZHANG Xiu-fu, WANG Dan-ying.

Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions [J]. >Journal of Integrative Agriculture, 2023, 22(3): 923-934.

[11] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[12] LI Hao-ruo, SONG Xiao-tong, Lars R. BAKKEN, JU Xiao-tang. Reduction of N2O emissions by DMPP depends on interaction of nitrogen source (digestate vs. urea) with soil properties[J]. >Journal of Integrative Agriculture, 2023, 22(1): 251-264.
[13] WANG Qiong, QIN Zhen-han, ZHANG Wei-wei, CHEN Yan-hua, ZHU Ping, PENG Chang, WANG Le, ZHANG Shu-xiang, Gilles COLINET. Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2720-2733.
[14] YIN Tao, QIN Hong-ling, YAN Chang-rong, LIU Qi, HE Wen-qing. Low soil carbon saturation deficit limits the abundance of cbbL-carrying bacteria under long-term no-tillage maize cultivation in northern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2399-2412.
[15] LIU Feng, YANG Fei, ZHAO Yu-guo, ZHANG Gan-lin, LI De-cheng. Predicting soil depth in a large and complex area using machine learning and environmental correlations[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2422-2434.
No Suggested Reading articles found!