Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (1): 11-19    DOI: 10.1016/S2095-3119(14)60764-4
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos
 ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo
1、National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of
Agricultural Sciences, Beijing 100081, P.R.China
2、Division of Agricultural and Environmental Science, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD,UK
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H2O2) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L–1 AGP or 0.005 to 0.01 ‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L–1 AGP application level in callus induction medium plant regeneration rates of 8.49, 409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L–1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 ‰ of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01 ‰ of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.

Abstract  The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H2O2) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L–1 AGP or 0.005 to 0.01 ‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L–1 AGP application level in callus induction medium plant regeneration rates of 8.49, 409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L–1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 ‰ of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01 ‰ of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.
Keywords:  wheat       immature embryos       plant regeneration       inter-culture       arabinogalactan proteins       hydrogen peroxide  
Received: 13 January 2014   Accepted:
Fund: 

This research was financially supported in part by the National Key Project for Tansgenic Study, Ministry of Agriculture of China(2011ZX08010-004).

Corresponding Authors:  YE Xing-guo, Tel: +86-10-82109765,Fax: +86-10-82105819, E-mail: yexingguo@caas.cn     E-mail:  yexingguo@caas.cn
About author:  These authors contributed equally to this study.

Cite this article: 

ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo . 2015. Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Journal of Integrative Agriculture, 14(1): 11-19.

Abbasi B H, Khan M, Guo B, Bokhari S A, Khan M A. 2011.Efficient regeneration and antioxidative enzyme activitiesin Brassica rapa var. turnip. Plant Cell, Tissue and OrganCulture, 105, 337-344

Capataz-Tafur J, Trejo-Tapia G, Rodr?´guez-Monroy M,Sepu´lveda-Jime´nez G. 2011. Arabinogalactan proteinsare involved in cell aggregation of cell suspension culturesof Beta vulgaris L. Plant Cell, Tissue and Organ Culture,106, 169-177

Carman J G. 1988. Improved somatic embryogenesis in wheatby partial simulation of the in-ovulo oxygen, growth-regulatorand desiccation environments. Planta, 175, 417-424

Carman J G, Jefferson N E, Campbell W F. 1987. Induction ofembryogenic Triticum aestivum L. calli. I. Quantification ofgenotype and culture medium effects. Plant Cell, Tissueand Organ Culture, 10, 101-113

Carman J G, Jefferson N E, Campbell W F. 1988. Induction ofembryogenic Triticum aestivum L. calli. II. Quantification oforganic addenda and other culture variable effects. PlantCell, Tissue and Organ Culture, 12, 97-110

Caswell K L, Leung N L, Chibbar R N. 2000. An efficient methodfor in vitro regeneration from immature inflorescenceexplants of Canadian wheat cultivars. Plant Cell, Tissueand Organ Culture, 60, 69-73

Cui K R, Xing G S, Liu X M, Xing G M, Wang Y F. 1999. Effectof hydrogen peroxide on somatic embryogenesis of Lyciumbarbarum L. Plant Science, 146, 9-16

Du H, Clarke A E, Bacic A.1996. Arabinogalactan-proteins:A class of extracellular matrix proteoglycans involved inplant growth and development. Trends in Cell Biology, 6,411-414

Egersdotter U, von Arnold S. 1995. Importance ofarsbinogalactan-protein for the development of somaticembryos of Norway spruce (Picea abies). PhysiologiaPlantarum, 93, 334-345

Faik A, Abouzouhair J, Sarhan F. 2006. Putative fasciclin-likearabinogalactan-proteins (FLA) in wheat (Triticum aestivum)and rice (Oryza sativa): Identification and bioinformaticanalyses. Molecular Genetics and Genomics, 276, 478-494

Gao M, Showalter A M. 1999. Yariv reagent treatment inducesprogrammed cell death in Arabidopisis cell cultures andimplicates arabinogalactan protein involvement. The PlantJournal, 1, 321-331

Gupta S D, Datta S. 2003. Antioxidant enzyme activitiesduring in vitro morphogenesis of gladiolus and the effect ofapplication of antioxidants on plant regeneration. BiologyPlant, 47, 179-183

Han X F, Tao L L, Yin G X, Liu X L, Du L P, Wei Y Q, Yan Y M,Ye X G. 2010. Effect of genotype and growing environmenton anther culture in wheat. Acata Agronomica Sinica, 36,1209-1215 (in Chinese)

Harris R, Wright M, Byme M, Vamum J, Brightwell B, SchubertK. 1989. Callus formation and plantlet regeneration fromprotoplasts derived from suspension cultures of wheat(Triticum aestivum L.). Plant Cell Reports, 7, 337-340

Hess J R, Carman J G. 1998. Embryogenic competenceof immature wheat embryos: Genotype, donor plantenvironment and endogenous hormone levels. CropScience, 38, 249-253

He D G, Yang Y M, Scott K J. 1988. A comparison of scutellumcallus and epiblast callus induction in wheat: The effect ofgenotype, embryo age and medium. Plant Science, 57,225-233

He D G, Yang Y M, Scott K J. 1989. The effect of macroelementsin the induction of embryogenic callus from immatureembryos of wheat (Triticum aestivum L.). Plant Science,64, 251-258

Hou B, Yu H, Teng S. 1997. Effects of low temperature oninduction and differentiation of wheat calli. Plant Cell, Tissueand Organ Culture, 49, 35-38

Kreuger M, van Holst G J. 1995. Arsbinogalactan proteinepitopes in somatic embryogenesis of Daucus carita L.Planta, 197, 135-141

Letarte J, Simion E, Miner M, Kasha K J. 2006. Arabinogalactansand arabinogalactan-proteins induce embryogenesis inwheat (Tritium aestivum L.) mictospore culture. Plant CellReports, 24, 691-698

Li B, Caswell K, Leung N, Chibbar R N. 2003. Wheat (Triticumaestivum L.) somatic embryogenesis from isolatedscutellum: Days post anthesis, days of spike storage, andsucrose concentration affect efficiency. In Vitro CellularDevelopmental Biology-Plant, 39, 20-23

Libik M, Konieczny R, Pater B, ?lesak I, Miszalski Z. 2005.Differences in the activities of some antioxidant enzymesand in H2O2 content during rhizogenesis and somaticembryogenesis in callus cultures of the ice plant. Plant CellReports, 23, 834-841

Lin S E, Huang P, Cao J S. 2011. The functions ofarabinogalactan-proteins in angiosperms. Chinese Journalof Cell Biology, 33, 306–312. (in Chinese)

Liu W, Zheng M Y, Polle E A, Konzak C F. 2002. Highly efficientdoubled-haploid production in wheat (Triticum aestivumL.) via induced microspore embryogenesis. Crop Science,42, 686-692

Lucau-Danila A, Laborde L, Legrand S, Huot L, Hot D, LemoineY, Hilbert J L, Hawkins S, Quillet M C, Hendriks T, BlervacqA S. 2010. Identification of novel genes potentially involvedin somatic embryogenesis in chicory (Cichorium intybus L.).BMC Plant Biology, 10, 122-136

Maria G M, Heidi F K. 2002. Auxin and sugar effects on callusinduction and plant regeneration frequencies from matureembryos of wheat (Triticum aestivum L.). In Vitro Cellular& Developmental Biology-Plant, 38, 39-45

Ouyang J W, Hu H, Zhuang J J, Zeng J Z. 1973. Productionof wheat haploid plants from the pollens and observationof their offspring. Science in China, 1, 72-82 (in Chinese)

Ozias-Akins P, Vasil I K. 1982. Plant regeneration from cultured immature embryos and inflorescences of Triticumaestivum L. (wheat): Evidence for somatic embryogenesis.Protoplasma, 110, 95-105

Özgen M, Tüuret M, Altionk S, Sancak C. 1998. Efficient callusinduction and plant regeneration from mature embryoculture of winter wheat (Triticum aestivum L.) genotypes.Plant Cell Reports, 18, 331-335

Paul F M, Tracy A V, Scott F L, Roger I P. 1997. Soluble signalsfrom cells identified at the cell wall establish a developmentalpathway in carrot. The Plant Cell, 9, 2225-2241

She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G. 2013.Efficient regeneration potential is closely related to auxinexposure time and catalase metabolism during the somaticembryogenesis of immature embryos in Triticum aestivumL. Molecular Biotechnology, 54, 451-460

Tang X C, He Y Q, Wang Y, Sun M X. 2006. The role ofarabinogalactan proteins binding to yariv reagents in theinitiation, cell developmental fate, and maintenance ofmicrospore embryogenesis in Brassica napus cv. L. Journalof Experimental Botany, 57, 2639-2650

Tian M, Gu Q, Zhu M. 2003. The involvement of hydrogenperoxide and antioxidant enzymes in the process of shootorganogenesis of strawberry callus. Plant Science, 165,701-707

Wang A J, Zhang Y, Liu Y, Feng H. 2012. Effect of AG andAGPs on microspore embryogenesis and plant regenerationof Chinese cabbage and pakchoi. China Vegetables, 4,62-66 (in Chinese)

Wang H B, Li X H, Sun Y R, Chen J, Zhu Z, Fang R, Wang P,Wei J Q. 1990. Culture of wheat protoplast. Scientia Sinica(Series B), 33, 294-302

Wang X M, Ren X, Yin G X, Wang K, Li J R, Du LP, Xu H J,Ye X G. 2014. Effects of environmental temperature on theregeneration frequency of the immature embryos of wheat(Triticum aestivum L.). Journal of Integrative Agriculture,13, 722-732

Ye X G, Xu H J, Zhao L L, Du L P. 1998. Studies on improvingwheat cultivars by tissue culture. Acata Agronomica Sinica,24, 310-314 (in Chinese)

Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye XG. 2011. Establishment of a highly efficient regenerationsystem for the mature embryo culture of wheat. AgriculturalSciences in China, 10, 9-17

Yuan S X , Su Y B, Liu Y M, Fang A Y, Yang L M, ZhuangM, Zhang Y Y, Sun P T. 2012. Effects of pH, MES,arabinogalactan-proteins on microspore cultures in whitecabbage. Plant Cell, Tissue and Organ Culture, 110, 69-76
[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[4] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[7] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[8] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[9] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[10] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[11] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[12] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

[13] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[14] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[15] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

No Suggested Reading articles found!