Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 339-351    DOI: 10.1016/j.jia.2025.10.013
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Matrix effect of hydroxycinnamic acids on chromatic properties and phenolic profile of Cabernet Sauvignon dry red wine

Lulu Wu1, Yu Zhang1, Mario Prejanò2, Tiziana Marino2, Nino Russo2, Guojie Jin1, 3, Yongsheng Tao1, 3, Yunkui Li1, 3#

1 College of Enology, Northwest A&F University, Yangling 712100, China

2 Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende 87036, Italy

3 Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China

 Highlights 
Hydroxycinnamic acids can enhance the color quality of wine through copigmentation.
Copigmentation is driven by hydrogen bonding and dispersion forces.
The anthocyanin backbone and the carboxyl group of sinapic acid are the key sites.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究探讨了在赤霞珠干红葡萄酒发酵前后添加羟基肉桂酸(咖啡酸、芥子酸、对香豆酸和绿原酸)对酒液颜色、花色苷及其他多酚类物质的影响。通过模拟溶液实验与理论计算,深入探讨了二甲花翠素-3-O-葡萄糖苷与芥子酸的辅色效应。结果表明,羟基肉桂酸类物质显著增强葡萄酒色泽,其中芥子酸(发酵前添加)展现出最显著的颜色保护效果。同时,总酚类物质与总花花色苷含量分别提升36%和28%。热力学分析表明,芥子酸与二甲花翠素-3-O-葡萄糖苷的相互作用具有自发性和放热性。理论研究揭示氢键与色散力是结合的主要驱动力,其中芥子酸羧基发挥关键作用,花色苷主链也对相互作用产生影响。



Abstract  

The effect of adding hydroxycinnamic acids (caffeic acid, sinapic acid, p-coumaric acid and chlorogenic acid) in Cabernet Sauvignon dry red wine before and after fermentation was investigated, taking into account the color parameters, anthocyanin content, and overall polyphenol levels in the wine samples.  The copigmentation effect of malvidin-3-O-glucoside and sinapic acid was further explored in model solution and through theoretical calculations.  The results indicated that the addition of hydroxycinnamic acids significantly enhanced the wine’s color with sinapic acid (before the fermentation) showing the most pronounced color protection effect.  Compared to control samples, the addition of hydroxycinnamic acids resulted in a 36% increase in total phenolic content and a 28% increase in total anthocyanin content.  Thermodynamic analysis revealed that the interaction between sinapic acid and malvidin-3-O-glucoside was spontaneous and exothermic.  Theoretical studies identified hydrogen bonding (HB) and dispersion forces as the main primary stabilizing forces, with the carboxyl group of sinapic acid playing a critical role while the anthocyanin backbone also influenced the interaction.

Keywords:  matrix effect       dry red wine       polyphenol       hydroxycinnamic acids       anthocyanins  
Received: 10 January 2025   Accepted: 23 September 2025 Online: 27 October 2025  
Fund: This work was supported by the Key R&D Program of Shaanxi Province, China (2024NC-YBXM-146), the Xi’an Agricultural Technology Research and Development Project, China (24NYGG0048), the Key R&D Program of Xianyang, China (L2024-ZDYF-ZDYF-NY-0028) and the National Foreign Expert Project of China (G2023172002L).
About author:  #Correspondence Yunkui Li, Tel: +86-29-87092107, Fax: +86-29-87092991, E-mail: ykli@nwsuaf.edu.cn

Cite this article: 

Lulu Wu, Yu Zhang, Mario Prejanò, Tiziana Marino, Nino Russo, Guojie Jin, Yongsheng Tao, Yunkui Li. 2026. Matrix effect of hydroxycinnamic acids on chromatic properties and phenolic profile of Cabernet Sauvignon dry red wine. Journal of Integrative Agriculture, 25(1): 339-351.

Alcalde-Eon C, Escribano-Bailón M T, Santos-Buelga C, Rivas-Gonzalo J C. 2006. Changes in the detailed pigment composition of red wine during maturity and ageing: A comprehensive study. Analytica Chimica Acta563, 238–254.

Aleixandre-Tudó J L, Álvarez I, Lizama V, Garcı́a M J, Aleixandre J L, Du Toit W J. 2013. Impact of caffeic acid addition on phenolic composition of tempranillo wines from different winemaking techniques. Journal of Agricultural and Food Chemistry61, 11900–11912.

Arnous A, Makris D P, Kefalas P. 2002. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from greece. Journal of Food Composition and Analysis15, 655–665.

Bimpilas A, Panagopoulou M, Tsimogiannis D, Oreopoulou V. 2016. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry197, 39–46.

Boulton R. 2001. The Copigmentation of Anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture52, 67–87.

Brouillard R, Dangles O. 1994. Anthocyanin molecular interactions: The first step in the formation of new pigments during wine aging? Food Chemistry51, 365–371.

Brouillard R, Mazza G, Saad Z, Albrecht-Gary A M, Cheminat A. 1989. The co-pigmentation reaction of anthocyanins: A microprobe for the structural study of aqueous solutions. Journal of the American Chemical Society111, 2604–2610.

Cliff M A, King M C, Schlosser J. 2007. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International40, 92–100.

Escribano-Bailon M T, Santos-Buelga C. 2012. Anthocyanin copigmentation- evaluation, mechanisms and implications for the colour of red wines. Current Organic Chemistry16, 715–723.

Fan S, Liu C, Li Y, Zhang Y. 2023b. Visual representation of red wine color: methodology, comparison and applications. Foods12, 924.

Fan S, Zhang Y, Li Y, 2023a. A New Approach for Quantitative Classification of Red Wine Color from the Perspective of Micro and Macro Levels. Fermentation9, 519.

Fanzone M, González-Manzano S, Pérez-Alonso J, Escribano-Bailón M T, Jofré V, Assof M, Santos-Buelga C. 2015. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food Chemistry175, 166–173.

Fontana A R, Antoniolli A, Bottini R. 2013. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry61, 8987–9003.

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, et al. 2009. Gaussian 09W, revision A. 02. Gaussian, Inc., Wallingford, CT.

Gao L, Girard B, Mazza G, Reynolds A G. 1997. Changes in anthocyanins and color characteristics of pinot noir wines during different vinification processes. Journal of Agricultural and Food Chemistry45, 2003–2008.

Gonnet J F. 1999. Colour effects of co-pigmentation of anthocyanins revisited–2.A colorimetric look at the solutions of cyanin co-pigmented byrutin using the CIELAB scale. Food Chemistry66, 387–394.

González-Manzano S, Dueñas M, Rivas-Gonzalo J C, Escribano-Bailón M T, Santos-Buelga C. 2009. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chemistry114, 649–656.

Grimme S, Antony J, Ehrlich S, Krieg H. 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics132, 154104.

Han F L, Jiang S M, He J J, Pan Q H, Duan C Q, Zhang M X. 2009. Anthocyanins in “Cabernet Gernischet” (Vitis vinifera L. cv.) aged red wine and their color in aqueous solution analyzed by partial least square regression. Food Science and Biotechnology18, 724–731.

Han F L, Zhang W N, Pan Q H, Zheng C R, Chen H Y, Duan C Q. 2008. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules13, 2859–2870.

Håkansson A E, Pardon K, Hayasaka Y, de Sa M, Herderich M. 2003. Structures and colour properties of new red wine pigments. Tetrahedron Letters44, 4887–4891.

Humphrey W, Dalke A, Schulten K. 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics14, 33–38.

Ignat I, Volf I, Popa V I. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry126, 1821–1835.

Kent K, Charlton K E, Netzel M, Fanning K. 2017. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. Journal of Human Nutrition and DieteticsThe Official Journal of the British Dietetic Association30, 260–274.

Khoo H E, Azlan A, Tang S T, Lim S M. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research61, 1361779.

Lambert S G, Asenstorfer R E, Williamson N M, Iland P G, Jones G P. 2011. Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chemistry125, 106–115.

Li Y, Prejanò M, Toscano M, Russo N. 2018. Oenin and quercetin copigmentation: highlights from density functional theory. Frontiers in Chemistry6, 245.

Li Y, Prejanò M, Toscano M, Russo N. 2019. Oenin/syringic acid copigmentation: insights from a theoretical study. Frontiers in Chemistry7, 579.

Lingua M S, Fabani M P, Wunderlin D A, Baroni M V. 2016. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chemistry208, 228–238.

Liu C, Wei X, Zhang Z, Miao Q, Prejanò M, Marino T, Tao Y, Li Y. 2025c. Color protection, aroma enhancement and sensory improvement of red wines: Comparison of pre-fermentation additions of cyclodextrins and polysaccharides. Food Chemistry477, 143432.

Liu C, Wu L, Fan S, Tao Y, Li Y. 2024. The protective effect of cyclodextrin on the color quality and stability of Cabernet Sauvignon red wine. Journal of Integrative Agriculture23, 310–323.

Liu C, Wu L, Zhang Z, Li Z, Prejanò M, Marino T, Tao Y, Li Y. 2025a. Copigmentation effect and mechanism of α-cyclodextrin on wine color quality and stability: Combining dynamics, thermodynamics, structural characterization and quantum mechanics. Food Hydrocolloids163, 111068.

Liu C, Zheng F, Li H, Prejanò M, Jin G, Tao Y, Li Y. 2025b. Thermodynamics and quantum mechanical insights into benzoic acid-acetate ester interactions for aroma modulation and controlled release in wine. Food Chemistry483, 144286.

Liu S X, Yang H Y, Li S Y, Zhang J Y, Li T, Zhu B Q, Zhang B L. 2015. Polyphenolic compositions and chromatic characteristics of bog bilberry syrup wines. Molecules20, 19865–19877.

Lu T, Chen F. 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry33, 580–592.

Malaj N, De Simone B C, Quartarolo A D, Russo N. 2013. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chemistry141, 3614–3620.

Mazza G, Fukumoto L, Delaquis P, Girard B, Ewert B. 1999. Anthocyanins, phenolics, and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia. Journal of Agricultural and Food Chemistry47, 4009–4017.

Mekoue Nguela J, Vernhet A, Julien-Ortiz A, Sieczkowski N, Mouret J R. 2019. Effect of grape must polyphenols on yeast metabolism during alcoholic fermentation. Food Research International121, 161–175.

Peri P, Kamiloglu S, Çapanoğlu E, Ozcelik B. 2015. Investigating the effect of aging on the phenolic content, antioxidant activity and anthocyanins in turkish wine. Journal of Food Processing and Preservation39, 1845–1853.

Rivero F J, Gordillo B, Jara-Palacios M J, González-Miret K L, Heredia F J. 2017. Effect of addition of overripe seeds from white grape by-products during red wine fermentation on wine colour and phenolic composition. LWT84, 544–550.

Simon S, Duran M, Dannenberg J J. 1996. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? The Journal of Chemical Physics105, 11024–11031.

Sun L, Warren F J, Gidley M J, Guo Y, Miao M. 2019. Mechanism of binding interactions between young apple polyphenols and porcine pancreatic α-amylase. Food Chemistry283, 468–474.

Teixeira N, Cruz L, Brás N F, Mateus N, Ramos M J, de Freitas V. 2013. Structural features of copigmentation of oenin with different polyphenol copigments. Journal of Agricultural and Food Chemistry61, 6942–6948.

Trouillas P, Sancho-García J C, De Freitas V, Gierschner J, Otyepka M, Dangles O. 2016. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews116, 4937–4982.

Wang X, Li Y, Song H, Tao Y, Russo N. 2021. Phenolic matrix effect on aroma formation of terpenes during simulated wine fermentation-part I: Phenolic acids. Food Chemistry341, 128288.

Wu L, Prejanò M, Russo N, Tao Y, Marino T, Li Y, 2026. Ethanol-Dependent Solvent effects on copigmentation between oenin and quercetin: Insights from spectroscopy, thermodynamics and molecular simulations. Journal of Molecular Structure1353, 144579.

Wu L, Zhang Y, Fan S, Prejanò M, Marino T, Russo N, Tao Y, Li Y. 2024a. Intermolecular interactions between malvidin-3-O-glucoside and caffeic acid: Structural and thermodynamic characterization and its effect on real wine color quality. Food Chemistry453, 139617.

Wu L, Zhang Y, Prejanò M, Marino T, Russo N, Tao Y, Li Y. 2024b. Gallic acid improves color quality and stability of red wine via physico-chemical interaction and chemical transformation as revealed by thermodynamics, real wine dynamics and benchmark quantum mechanical calculations. Food Research International188, 114510.

Wu L, Zheng F, Li H, Prejanò M, Marino T, Russo N, Tao Y, Li Y. 2025. Effect of hydroxycinnamic acids on ester-improving and aroma-enhancing of Cabernet Sauvignon red wine and its mechanism. Food Research International217, 116763.

Xue Z D, Zhang Q A, Wang T T. 2021. Co-pigmentation of caffeic acid and catechin on wine color and the effect of ultrasound in model wine solutions. Journal of AOAC International104, 1703–1709.

Zezulová E, Göttingerová M, Kiss T, Ondrášek I, Venuta R, Wolf J, Necas T. 2021. CIELAB analysis and quantitative correlation of total anthocyanin content in European and Asian plums. European Journal of Horticultural Science86, 453–460.

Zhang B, He F, Zhou P P, Liu Y, Duan C Q. 2015a. Copigmentation between malvidin-3-O-glucoside and hydroxycinnamic acids in red wine model solutions: Investigations with experimental and theoretical methods. Food Research International78, 313–320.

Zhang B, Liu R, He F, Zhou P P, Duan C Q. 2015b. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: Experimental and theoretical investigations. Food Chemistry170, 226–233.

Zhang X K, Jeffery D W, Li D M, Lan Y, Zhao X, Duan C Q. 2022. Red wine coloration: A review of pigmented molecules, reactions, and applications. Comprehensive Reviews in Food Science and Food Safety21, 3834–3866.

[1] Wenqing Tan, Xinbo Guo, Zhangying Wang, Rong Zhang, Chaochen Tang, Bingzhi Jiang, Ruixue Jia, Yuanyuan Deng, Shaohai Yang, Jingyi Chen.

Metabolic profiles and morphological characteristics of leaf tips among different sweet potato (Ipomoea batatas Lam.) varieties [J]. >Journal of Integrative Agriculture, 2024, 23(2): 494-510.

[2] ZHAO Ji-chun, AO Miao, HE Xiao-qin, LI Wei-zhou, DENG Li-li, ZENG Kai-fang, MING Jian. Changes in phenolic content, composition and antioxidant activity of blood oranges during cold and on-tree storage[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3669-3683.
[3] LI Jun, WANG Hui, LU Yang, MAO Tang-fen, XIONG Jiang, HE Sheng-ling, LIU Hui . Inhibitory effect of tartary buckwheat seedling extracts and associated flavonoid compounds on the polyphenol oxidase activity in potatoes (Solanum tuberosum L.)[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2173-2182.
[4] Marcelina Krupa-Ma?kiewicz, Jan Oszmiański, Sabina Lachowicz, Ma?gorzata Szczepanek, Bogus?awa Ja?kiewicz, Kamila Pachnowska, Ireneusz Ochmian.
Effect of nanosilver (nAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1871-1881.
[5] Bevly M. Mampholo, Martin Maboko, Puffy Soundy, Dharini Sivakumar. Postharvest responses of hydroponically grown lettuce varieties to nitrogen application rate[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2272-2283.
[6] Mona S. Alwhibi, Abeer Hashem, Elsayed Fathi Abd_Allah, Abdulaziz A. Alqarawi, Dina Wafi K. Soliman, Stephan Wirth, Dilfuza Egamberdieva. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1751-1757.
[7] ZHANG Shi-lin, DENG Peng, XU Yu-chao, Lü Shan-wu, WANG Jian-jun. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2175-2181.
[8] L Sabatino, G Iapichino, A Maggio, E D’ Anna, M Bruno, F D’ Anna. Grafting affects yield and phenolic profie of Solanum melongena L. landraces[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1017-1024.
[9] SHA Pin-jie, FAN Yin-jun, WANG Zhi-chao, SHI Xue-yan. Response dynamics of three defense related enzymes in cotton leaves to the interactive stress of Helicoverpa armigera (Hübner) herbivory and omethoate application[J]. >Journal of Integrative Agriculture, 2015, 14(2): 355-364.
[10] CAO Shao-qian, LIU Liang , PAN Si-yi. Thermal Degradation Kinetics of Anthocyanins and Visual Color of Blood Orange Juice[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1992-1997.
No Suggested Reading articles found!