Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 352-365    DOI: 10.1016/j.jia.2025.09.014
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Mechanical stress induces molecular changes in oolong tea: Insights from multi-omics analysis

Zhilong Hao1, 2*#, Yuping Zhang1, 3*, Weiyi Kong1, 3, Jiao Feng1, 3, Yucheng Zheng4, Hongzheng Lin5, Xiaomin Yu1, Yun Sun1, 2, Xiangxiang Huang1, 2, Wei Wang1, 2, Yang Wu1, 2#, Xinyi Jin1, 2#

1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China

3 Tea Industry Branch of 6.18 Collaborative Innovation Institute in Fujian Province, Fuzhou 350002, China

4 College of Tea and Food Sciences/Tea Engineering Research Center of Fujian Higher Education/Tea Science Research Institute, Wuyi University, Wuyishan 354300, China

5 Fujian Vocational College of Agriculture, Fuzhou 350303, China

 Highlights: 

Integrated multi-omics (metabolomics, transcriptomics, proteomics) elucidates tea leaf responses to mechanical stress.
Mechanical stress-activated DAMPs ignite the Ca2+-JA-GSH signaling cascade, orchestrating downstream aroma biosynthesis.
Mechanical stress induces LOX/PAR genes and their encoded proteins in α-linolenic/Phe metabolism, boosting accumulation of 2-phenylethanol and jasmine lactone.

Integrated multi-omics (metabolomics, transcriptomics, proteomics) elucidates tea leaf responses to mechanical stress.
Mechanical stress-activated DAMPs ignite the Ca2+-JA-GSH signaling cascade, orchestrating downstream aroma biosynthesis.
Mechanical stress induces LOX/PAR genes and their encoded proteins in α-linolenic/Phe metabolism, boosting accumulation of 2-phenylethanol and jasmine lactone.

-->

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

乌龙茶以其独特的花果香及醇厚的滋味备受消费者青睐。在其加工过程中,摇青工序是塑造其特色风味的关键步骤。在摇青过程中,茶叶经受反复的机械胁迫,进而触发一系列代谢变化,最终影响茶叶的品质。因此,深入解析茶树叶片响应机械胁迫的分子机制,对于揭示乌龙茶采后品质形成机制具有重要意义。本研究以铁观音鲜叶为材料,整合代谢组学、转录组学和TMT蛋白组学分析,系统分析乌龙茶摇青阶段机械胁迫下代谢物、转录本和蛋白质的动态变化规律及其互作关系。结果表明,机械胁迫首先激活损伤相关分子模式(DAMPs),介导Ca²⁺信号、茉莉酸(JA)信号及谷胱甘肽(GSH)代谢等途径的级联响应,并进一步诱导与品质形成密切相关的 α-亚麻酸代谢途径与苯丙氨酸代谢途径。在信号转导层面,CNGCs/CaCML介导的Ca²⁺内流、Rboh/CDPK驱动的ROS爆发以及JAZ/MYC2调控的JA信号网络均表现出基因及其编码蛋白的显著上调,共同激活MAPK级联反应;同时,GPX/GSTs参与的谷胱甘肽代谢维持氧化还原稳态,并与抗坏血酸-谷胱甘肽(ASC-GSH)循环形成联动,从而协调转录、翻译及代谢水平的整体响应。在代谢调控层面,α-亚麻酸途径中LOX等关键基因及其编码的蛋白上调表达,促进茉莉内酯等脂肪酸衍生香气物质的积累;苯丙氨酸途径中PASSPARAROADH等基因及AROADH蛋白上调表达,促进2-苯乙醇和苯甲醇合成。本研究基于多组学技术初步构建了机械胁迫信号转导代谢调控的调控框架,有助于深入理解乌龙茶特征性物质的形成机制,并为乌龙茶品质代谢调控提供参考。



Abstract  

Understanding the molecular responses of tea leaves to mechanical stress is crucial for elucidating the mechanisms of post-harvest quality formation during oolong tea processing.  This study employed an integrated multi-omics strategy to characterize the changes and interactions among metabolomic (MB), transcriptomic (TX), and proteomic (PT) profiles in mechanically stressed tea leaves.  Mechanical stress initially activated damage-associated molecular patterns (DAMPs), including Ca2+ signaling, jasmonic acid signaling, and glutathione metabolism pathways.  These processes subsequently induced quality-related metabolic pathways (QRMPs), particularly α-linolenic acid and phenylalanine metabolism.  Up-regulated expression of LOX, ADH1, and PAR genes, together with the increased abundance of their encoded proteins, respectively promoted the accumulation of jasmine lactone, benzyl alcohol, and 2-phenylethanol.  These findings indicate that mechanical stress influences the metabolite biosynthesis in tea leaves through coordinated molecular responses.  This study provides new insights into the molecular mechanisms underlying tea leaf responses to mechanical stress and a foundation for future investigations into how early molecular events may contribute to post-harvest metabolic changes during oolong tea processing.


Keywords:  oolong tea        multi-omics        mechanical stress        defense response        α-Linolenic acid metabolism       phenylalanine metabolism  
Received: 14 May 2025   Accepted: 09 August 2025 Online: 12 September 2025  
Fund: 

This study was supported by the National Key Research and Development Program of China (2022YFD2101101), the Earmarked Fund for CARS-19, the National Natural Science Foundation of China (32402634), the Modern Agricultural (Tea) Industry Technology System of Fujian Province, China (2025 No. 593) and the Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation, China (FJZTF01).  

About author:  #Correspondence Zhilong Hao, E-mail: haozhilong@126.com; Yang Wu, E-mail: wy_forward@fafu.edu.cn; Xinyi Jin, E-mail: jxy427@tom.com * These authors contributed equally to this sthdy.

Cite this article: 

Zhilong Hao, Yuping Zhang, Weiyi Kong, Jiao Feng, Yucheng Zheng, Hongzheng Lin, Xiaomin Yu, Yun Sun, Xiangxiang Huang, Wei Wang, Yang Wu, Xinyi Jin. 2026. Mechanical stress induces molecular changes in oolong tea: Insights from multi-omics analysis. Journal of Integrative Agriculture, 25(1): 352-365.

Beck J J, Smith L, Baig N. 2014. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochemical Analysis25, 331–341.

Cai J, Aharoni A. 2022. Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology69, 102288.

Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. 2020. Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (Camellia sinensis). Biomolecules10, 311.

Chen M, Zhang Y, Wang Y, Cheng P, Zhang Q, Li M, Jia X, Pan Y, Lin S, Luo Z, Wang H, Ye J. 2024. Transcriptomic analysis of the effect of shaking and tumbling degree on quality formation of wuyi rock tea. Journal of Food Science89, 81–95.

Choi H W, Klessig D F. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology16, 232.

Dorion S, Ouellet J C, Rivoal J. 2021. Glutathione metabolism in plants under stress: Beyond reactive oxygen species detoxification. Metabolites11, 641.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Regev, A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology29, 644–652.

Guo X, Schwab W, Ho C T, Song C, Wan X. 2022. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chemistry376, 131933.

Hao X, Horvath D, Chao W, Yang Y, Wang X, Xiao B. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences15, 22155–22172.

He H F, Wei K, Yin J, Ye Y. 2021. Insight into tea flavonoids: Composition and chemistry. Food Reviews International37, 812–823.

Hou S, Liu D, He P. 2021. Phytocytokines function as immunological modulators of plant immunity. Stress Biology1, 8.

Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. 2020. (Z)-3-hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensisPlant Molecular Biology103, 287–302.

Huang X, Cao H, Guo Y, Liu J, Sun Y, Liu S, Lin J, Wei S, Wu L. 2020. The dynamic change of oolong tea constitutes during enzymaticcatalysed process of manufacturing. International Journal of Food Science and Technology55, 3604–3612.

Huber A E, Bauerle T L. 2016. Long-distance plant signaling pathways in response to multiple stressors: The gap in knowledge. Journal of Experimental Botany67, 2063–2079.

Kaminaga Y, Schnepp J, Peel G, Kish C M, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield D M, Cooper A J L, Schloss J V, Pichersky E, Vainstein A, Dudareva N. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry281, 23357–23366.

Kumar S, Pandey A K. 2013. Chemistry and biological activities of flavonoids: An overview. Scientific World Journal2013, 162750.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics12, 323.

Li C, Lin J, Hu Q, Sun Y, Wu L. 2023. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over tieguanyin oolong tea production. Food ChemistryX20, 100952.

Li H, Liu J X, Wang Y, Zhuang J. 2020. The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. Plant Science296, 110500.

Lin J, Lin H, Li C, Liao N, Zheng Y, Yu X, Sun Y, Wu L. 2024. Unveiling characteristic metabolic accumulation over enzymatic-catalyzed process of tieguanyin oolong tea manufacturing by DESI-MSI and multiple-omics. Food Research International181, 114136.

Lin J, Tu Z, Zhu H, Chen L, Wang Y, Yang Y, Lv H, Zhu Y, Yu L, Ye Y. 2022. Effects of shaking and withering processes on the aroma qualities of black tea. Horticulturae8, 549.

Liu S, Guo L, Zhou Q, Jiang Z, Jin L, Zhu J, Xie H, Wei C. 2022. Identification and functional analysis of two alcohol dehydrogenase genes involved in catalyzing the reduction of (Z)-3-hexenal into (Z)-3-hexenol in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry70, 1830–1839.

Liu X, Zhao M, Gu C, Jiang H, Sun J, Li J. 2022. Genome-wide identification of MAPK family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Open Life Sciences17, 1064–1074.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Meena M K, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew M K, Boland W, Mithöfer A, Vadassery J. 2019. The Ca2+ channel CNGC19 regulates arabidopsis defense against spodoptera herbivory. The Plant Cell31, 1539–1562.

Ni T, Xu S, Wei Y, Li T, Jin G, Deng W W, Ning J. 2021. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-based proteomics. LWT-Food Science & Technology147, 111614.

O’Connell R J, Thon M R, Hacquard S, Amyotte S G, Kleemann J, Torres M F, Damm U, Buiate E A, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser C A, Becker C, Birren B W, Chen Z, Choi J, Crouch J A, Duvick J P, et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics44, 1060–1065.

Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences20, 2479.

Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N. 2007. Production of 2-phenylethanol in roses as the dominant floral scent compound fromL-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. BioscienceBiotechnologyand Biochemistry71, 2408–2419.

Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z. 2015. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biology15, 233.

Shi J, Xie D, Qi D, Peng Q, Chen Z, Schreiner M, Lin Z, Baldermann S. 2019. Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea. Frontiers in Plant Science10, 781.

Song C, Härtl K, McGrapher K, Hoffman T, Schwab W. 2018. Attractive but toxic: Emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Molecular Plant11, 1225–1236.

Wang D, Yoshimura T, Kubota K, Kobayashi A. 2000. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. Journal of Agricultural and Food Chemistry48, 5411–5418.

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America115, E4151–E4158.

Wu L, Wang Y, Liu S, Sun Y, Li C, Lin J, Wei S. 2022. The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of zhangping shuixian tea. Food Chemistry391, 133192.

Xue Z, Chen Z, Wang Y, Sun W. 2023. Proteomic analysis reveals the association between the pathways of glutathione and α-Linolenic acid metabolism and lanthanum accumulation in tea plants. Molecules28, 1124.

Yang Z, Sakai M, Sayama H, Shimeno T, Yamaguchi K, Watanabe N. 2009. Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. Journal of Plant Physiology166, 887–891.

Zeng L, Wang X, Xiao Y, Gu D, Liao Y, Xu X, Jia Y, Deng R, Song C, Yang Z. 2019a. Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry67, 6541–6550.

Zeng L, Watanabe N, Yang Z. 2019b. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition59, 2321–2334.

Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, Jia Y, Dong F, Yang Z. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry66, 3899–3909.

Zhang G, Yang J, Cui D, Zhao D, Li Y, Wan X, Zhao J. 2020. Transcriptome and metabolic profiling unveiled roles of peroxidases in theaflavin production in black tea processing and determination of tea processing suitability. Journal of Agricultural and Food Chemistry68, 3528–3538.

Zhang H, Zhu J, Gong Z, Zhu J K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics23, 104–119.

Zhang N, Jing T, Zhao M, Jin J, Xu M, Chen Y, Zhang S, Wan X, Schwab W, Song C. 2019. Untargeted metabolomics coupled with chemometrics analysis reveals potential non-volatile markers during oolong tea shaking. Food Research International123, 125–134.

Zhang X, Yu Y, Zhang J, Qian X, Li X, Sun X. 2024. Recent progress regarding jasmonates in tea plants: Biosynthesis, signaling, and function in stress responses. International Journal of Molecular Sciences25, 1079.

Zhao M, Zhang N, Gao T, Jin J, Jing T, Wang J, Wu Y, Wan X, Schwab W, Song C. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist226, 362–372.

Zheng Y, Chen X, Wang P, Sun Y, Yue C, Ye N. 2020. Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensisScientific Reports10, 2792.

Zhou Z, Wu Q, Ni Z, Hu Q, Yang Y, Zheng Y, Bi W, Deng H, Liu Z, Ye N, Lai Z, Sun Y. 2021. Metabolic flow of C6 volatile compounds from LOX-HPL pathway based on airflow during the post-harvest process of oolong tea. Frontiers in Plant Science12, 738445.

Zhou Z, Wu Q, Rao H, Cai L, Zheng S, Sun Y. 2023. The dynamic change in aromatic compounds and their relationship with CsAAAT genes during the post-harvest process of oolong tea. Metabolites13, 868.

Zhu C, Zhang S, Fu H, Zhou C, Chen L, Li X, Lin Y, Lai Z, Guo Y. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science10, 1638.

Zhu Q, Liu L, Lu X, Du X, Xiang P, Cheng B, Tan M, Huang J, Wu L, Kong W, Shi Y, Wu L, Lin J. 2023. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.). Frontiers in Plant Science14, 1149182.

[1] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
No Suggested Reading articles found!