Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 326-338    DOI: 10.1016/j.jia.2025.04.029
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area

Xiaohui Xu1, 2, Qiang Chai2#, Falong Hu1, 2, Wen Yin1, 2, Zhilong Fan1, 2, Hanting Li1, 3, Zhipeng Liu1, 2, Qiming Wang1, 2

1 State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China

2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

3 College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China

 Highlights 
Intercropping green manure with reduced N improves the structure of aggregates.
The impact of N reduction on SOC is compensated by intercropping green manure.
The compensatory effect of intercropping increases with time.
Intercropping with reduced N increases SOC by optimizing soil aggregates.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

提高土壤有机碳(SOC)储量是实现农业可持续发展的重要途径。然而,农业生产中, 使用豆科绿肥作物替代部分化学氮肥能否实现这一目标尚不明确。本研究通过为期六年的田间定位试验,探究绿肥间作结合化学氮肥减量对土壤有机碳储量的影响土壤团聚体组成与碳固存之间的关系。试验采用裂区设计,主区设置三种种植模式玉米间作箭筈豌豆(M/V)、玉米间作油菜(M/R)以及单作玉米(M), 在副区设置两种施氮梯度:常规施氮量(N2, 360 kg ha-1)和减量施氮(N1, 270 kg ha-1, 减少25%)基于2020-2022连续采集土壤样本。获得结果显示, 与单作玉米相比, 绿肥间作(M/VM/R)显著提升了SOC含量, 三年平均增幅达12.19.1%有效弥补了因施氮量减少25%所产生的负面影响。M/V与M/R之间无显著差异。在单作玉米中, N1条件下SOC含量较N2处理降低了9.3-10.5%;但在间作绿肥模式(M/VM/R), N1N2处理的SOC储量差异并不显著。在N1处理下, M/VM/R的土壤有机碳含量分别比单作玉米高20.916.3%, 而在N2处理下, 二者与单作玉米无差异。随着种植年限的延长,间作绿肥模式表现出显著的累积效应影响, 2022年这两种间作系统在0-20 cm层的SOC含量相较于2020年提高了5.3%。减氮条件下, 间作绿肥与单作玉米相比, 增加了大团聚体(>0.25 mm)的比例及团聚体稳定性(MWD和GMD), 同时降低了微团聚体(<0.25 mm)的比例。结构方程模型表明,种植模式和施氮水平主要是是通过调控大团聚体组成和团聚体有机碳(AOC间接影响SOC。相关性分析进一步揭示大团聚体组成与SOC含量呈显著正相关 (R2=0.64)。此外, 间作绿肥及减量施氮能够通过增加土壤有机碳含量维持较高的作物产量。本研究证实, 在绿洲灌溉区实施间作绿肥结合化学氮肥减量25%是优化土壤团聚体组成增加土壤有机碳汇、提高玉米产量的可行措施。



Abstract  

Enhancing soil organic carbon (SOC) stocks is a key aspect of modern agriculture, but whether this can be achieved by incorporating legume green manure crops in cereal production to substitute synthetic N fertilizers is unknown.  This study used a six-year (2017–2022) field study to explore the impacts of intercropping green manure with maize and reducing nitrogen fertilization on SOC stocks, while specifically focusing on the relationship between aggregate composition and carbon sequestration.  Maize intercropped with common vetch (M/V), maize intercropped with rapeseed (M/R), and sole maize (M), were each tested at conventional (N2, 360 kg ha–1) and reduced (N1, 270 kg ha–1, 25% reduced) N application rates.  Soil was sampled in 2020, 2021, and 2022.  Compared with sole maize, intercropping with green manure (M/V and M/R) significantly increased SOC stocks which compensated for any negative effect due to the 25% reduction in N application.  Based on 3-year averages, intercropping with M/V and M/R increased the SOC content compared to sole maize (M) by 12.1 and 9.1%, respectively, with intercropping further mitigating the negative impact of reduced nitrogen application.  There was no significant difference between M/V and M/R.  The SOC content at N1 was reduced by 9.3–10.5% compared to that at N2 in sole maize, but the differences in SOC stocks between N1 and N2 were not significant in the intercropping patterns (M/V and M/R).  The intercropped M/V and M/R showed 20.9 and 16.3% higher SOC contents compared to sole maize at N1, with no differences at N2.  Intercropping green manure led to a 5.3% greater SOC in the 0–20 cm depth soil in 2022 compared to that in 2020, due to the cumulative effect of two years of green manure intercropping.  Intercropping green manure (M/V and M/R) increased the proportion of macroaggregates (>0.25 mm) and aggregate stability while reducing the proportion of microaggregates compared to sole maize under the N1 application.  Structural equation modeling indicated that cropping patterns and nitrogen application levels mainly affect SOC indirectly by regulating the composition of macroaggregates and aggregate organic carbon (AOC).  Correlation analysis further revealed that the composition of macroaggregates is significantly and positively correlated with the SOC content (R²=0.64).  In addition, intercropping green manure can maintain high crop yields by increasing SOC under reduced chemical nitrogen application.  The results of this study show that intercropping green manure with grain crops can be a viable measure for increasing SOC sinks and maize productivity by optimizing the aggregate composition with reduced N application in the Hexi Oasis Irrigation Area.

Keywords:  intercropping green manure       soil organic carbon       soil aggregate composition       maize  
Received: 13 December 2024   Accepted: 24 March 2025 Online: 25 April 2025  
Fund: This work was supported by the National Key Research and Development Program of China (2021YFD1700204), the National Natural Science Foundation of China (U21A20218 and 32372238), the Modern Agro-Industry Technology Research System of China (CARS-22-G-12) and the “Innovation Star” Program of Graduate Students in 2025 of Gansu Province, China (2025CXZX-749).
About author:  Xiaohui Xu, E-mail: xuxiaohui0318@126.com; #Correspondence Qiang Chai, E-mail: chaiq@gsau.edu.cn

Cite this article: 

Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. 2026. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area. Journal of Integrative Agriculture, 25(1): 326-338.

Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize–green manure intercropping in Northwest China. Journal of Environmental Management321, 115859–115871.

Agnihotri R, Sharma M P, Prakash A, Ramesh A, Bhattacharjya S, Patra A K, Manna M C, Kurganova I, Kuzyakov Y. 2022. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Science of the Total Environment806, 150571–150581.

Amelung W, Bossio D, de Vries W, Kögel Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabbi A. 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications11, 5427.

Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil & Tillage Research218, 105318.

Bauçà S C, Marqués A, Vidal N L, Bota J, Baraza E. 2019. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecological Engineering127, 285–291.

Beillouin D, Corbeels M, Demenois J, Berre D, Boyer A, Fallot A, Feder F, Cardinael R. 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nature Sustainability14, 3700.

Bossio D, Cook Patton S, Ellis P, Fargione J, Sanderman J, Smith P, Wood S, Zomer R, Von Unger M, Emmer I. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability3, 391–398.

Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J. 2014. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist206, 107–117.

Chai Q, Nemecek T, Liang C, Zhao C, Yu A Z, Coulter J A, Wang Y F, Hu F L, Wang L, Siddique K H. 2021. Integrated farming with intercropping increases food production while reducing environmental footprint. Proceedings of the National Academy of Sciences of the United States of America118, e2106382118.

Chai Q, Qin A Z, Gan Y T, Yu A Z. 2014. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agronomy for Sustainable Development34, 535–543.

Chen H Q, Hou R X, Gong Y X, Li H W, Fan M S, Kuzyakov Y. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil & Tillage Research106, 85–94.

Chen H Q, Liang Q, Gong Y S, Kuzyakov Y, Fan M S, Plante A F. 2019. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil & Tillage Research194, 104296–104303.

Chen Y, Zhang X D, He H B, Xie H T, Yan Y, Zhu P, Ren J, Wang L C. 2010. Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. Journal of Soils & Sediments10, 1018–1026.

Chenu C, Angers D A, Barré P, Derrien D, Arrouays D, Balesdent J. 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil & Tillage Research188, 41–52.

Cong W F, Ruijven J V, Mommer L, Deyn G B D, Hoffland E. 2014. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology102, 1163–1170.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience12, 989–994.

Ding X L, Han X Z. 2014. Effects of long-term fertilization on contents and distribution of microbial residues within aggregate structures of a clay soil. Biology and Fertility of Soils50, 549–554.

Donhauser J, Qi W, Pinto B B, Frey B. 2020. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Global Change Biology27, 1365–1386.

Elfstrand S, Hedlund K, Mårtensson A. 2007. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology35, 610–621.

FAO/UNESCO (Food and Agriculture Organization of the United Nations). 1988. Soil Map of the World: Revised Legend. FAO/UNESCO. [2025-2-19]. http://www.fao.org/climatechange

Franke A C, Laberge G, Oyewole B D, Schulz S. 2008. A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah. Nutrient Cycling in Agroecosystems82, 117–135.

Gou Z W, Yin W, Asibi A E, Fan Z L, Chai Q, Cao W D. 2022. Improving the sustainability of cropping systems via diversified planting in arid irrigation areas. Agronomy for Sustainable Development42, 1–16.

Han F, Guo R, Hussain S, Guo S, Cai T, Zhang P, Jia Z, Naseer M A, Saqib M, Chen X. 2023. Rotation of planting strips and reduction in nitrogen fertilizer application can reduce nitrogen loss and optimize its balance in maize–peanut intercropping. European Journal of Agronomy143, 126707–126720.

Hartley I P, Hill T C, Chadburn S E, Hugelius G. 2021. Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nature Communications12, 6713.

Hauggaard Nielsen H, Jensen E S. 2005. Facilitative root interactions in intercrops. Plant and Soil274, 237–250.

Hazra K K, Nath C P, Singh U, Praharaj C S, Kumar N, Singh S S, Singh N P. 2019. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. Geoderma353, 308–319.

He Y T, Zhang W J, Xu M G, Tong X G, Sun F X, Wang J Z, Huang S M, Zhu P, He X H. 2015. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment532, 635–644.

Heanes D L. 1984. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in Soil Science and Plant Analysis15, 1191–1213.

Hu Q J, Jiang T, Thomas B W, Chen J, Xie J, Hu Y X, Kong F i, Yang Y, Chen X P, Zhang Y T, Shi X J. 2023. Legume cover crops enhance soil organic carbon via microbial necromass in orchard alleyways. Soil & Tillage Research234, 105858.

Hu Q J, Zhang Y T, Cao W D, Yang Y Y, Hu Y X, He T G, Li Z Y, Wang P, Chen X P, Chen J, Shi X J. 2024. Legume cover crops sequester more soil organic carbon than non-legume cover crops by stimulating microbial transformations. Geoderma450, 117024.

Kabiri V, Raiesi F, Ghazavi M A. 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil & Tillage Research154, 114–125.

Kazmierczak T, Yang L, Boncompagni É, Meilhoc E, Brouquisse R. 2020. Legume nodule senescence: A coordinated death mechanism between bacteria and plant cells. Advances in Botanical Research94, 181–212.

Kong A Y Y, Six J, Bryant D C, Denison R F, van Kessel C. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal69, 1078–1085.

Lal R. 2004a. Offsetting China’s COemissions by soil carbon sequestration. Climatic Change65, 263–275.

Lal R. 2004b. Soil carbon sequestration to mitigate climate change. Geoderma123, 1–22.

Lal R, Delgado J A, Groffman P M, Millar N, Dell C, Rotz A. 2011. Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation66, 276–285.

Li G L, Chen X F, Qin W J, Chen J R, Leng K, Sun L Y, Liu M, Wu M, Fan J B, Xu C X, Liu J. 2024. Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol. Journal of Integrative Agriculture23, 2099–2111.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology27, 2763–2779.

Li H T, Fan Z L, Wang Q M, Wang G C, Yin W, Zhao C, Yu A Z, Cao W D, Chai Q, Hu F L. 2023. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. European Journal of Agronomy145, 126788.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability4, 943–950.

Liu K L, Han T F, Huang J, Huang Q H, Li D M, Hu Z H, Yu X C, Muhammad Q, Ahmed W, Hu H W. 2019. Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma352, 160–170.

Liu R, Jiang P, Zhou G P, Chang D N, Liang H, Chai Q, Cao W D. 2024. Co-incorporation of wheat straw and hairy vetch reduced soil N2O emission via regulating nitrifier and denitrifier structure on the Qinghai Plateau. Applied Soil Ecology202, 105574.

Liu W X, Wei Y X, Li R C, Chen Z, Wang H D, Virk A L, Lal R, Zhao X, Zhang H L. 2022. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment847, 157518.

Lu X F, Gilliam F S, Guo J Y, Hou E Q, Kuang Y W. 2021. Decrease of soil acidity has greater effects than increase of aboveground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment. Journal of Applied Ecology59, 768–778.

Martens D A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry32, 361–369.

De Medeiros E V, Silva A O, Duda G P, Dos Santos U J, Junior A J D S. 2018. The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and Soil435, 175.170–185.170.

Minasny B, Malone B P, Mcbratney A B, Angers D A, Winowiecki L A. 2017. Soil carbon 4 per mille. Geoderma292, 59–86.

Nakamoto T, Suzuki K. 2001. Influence of soybean and maize roots on the seasonal change in soil aggregate size and stability. Plant Production Science4, 317–319.

Patoine G, Eisenhauer N, Cesarz S, Phillips H R P, Xu X, Zhang L, Guerra C A. 2022. Drivers and trends of global soil microbial carbon over two decades. Nature Communications13, 4195.

Qiu Q Y, Wu L F, yang Z O, Li B B, Xu Y Y, Wu S S, Gregorich E G. 2016. Priming effect of maize residue and urea N on soil organic matter changes with time. Applied Soil Ecology100, 65.60–74.60.

Ren S, Terrer C, Li J, Cao Y F, Yang S S, Liu D. 2024. Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nature Climate Change14, 1–7.

Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. AMBIO46, 4–17.

Sainju U, Whitehead W, Singh B. 2003. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Canadian Journal of Soil Science83, 155–165.

Six J, Conant R T, Paul E A, Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil241, 155–176.

Six J, Elliott E T, Paustian K. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal64, 1042–1049.

Sun T, Mao X L, Han K F, Wang X J, Cheng Q, Liu X, Zhou J J, Ma Q X, Ni Z H, Wu L H. 2023. Nitrogen addition increased soil particulate organic carbon via plant carbon input whereas reduced mineral−associated organic carbon through attenuating mineral protection in agroecosystem. Science of the Total Environment899, 165705.

Tian X L, Wang C B, Bao X G, Wang P, Li X F, Yang S C, Ding G C, Christie P, Li L. 2019. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil436, 173–192.

Udom B, Nuga B, Adesodun J. 2016. Water-stable aggregates and aggregate-associated organic carbon and nitrogen after three annual applications of poultry manure and spent mushroom wastes. Applied Soil Ecology101, 5–10.

Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science37, 29–38.

Wang J, Sun X, Du L, Sun W, Wang X, Gaafar A R Z, Zhang P, Cai T, Liu T, Jia Z, Chen X, Ren X. 2024. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma441, 116743.

Wang W, Chen G, Li M Y, Chen Y, Wang Y, Tao H, Hou H, Rehman M M U, Ashraf M, Song Y, Kavagi L, Wang B Z, Xiong Y. 2024. Long-term cereal-legume intercropping accelerates soil organic carbon loss in subsoil of dryland. Resources Conservation and Recycling211, 107898.

Wang W, Li M, Zhu S, Khan A, Tao X, Liu H, Zhang W, Tao H, Gong D, Song C, Xiong Y. 2023. Plant facilitation improves carbon production efficiency while reducing nitrogen input in semiarid agroecosystem. Catena230, 107247.

Wang X, Chen Y, Yang K, Duan F, Liu P, Wang Z, Wang J. 2021. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. Journal of Cleaner Production314, 127997–128006.

Wang Y, Pang J, Zhang M, Tian Z, Wei T, Jia Z, Ren X, Zhang P. 2023. Is adding biochar be better than crop straw for improving soil aggregates stability and organic carbon contents in film mulched fields in semiarid regions? Evidence of 5-year field experiment. Journal of Environmental Management338, 117711.

Wang Y D, Wang Z L, Zhang Q Z, Hu N, Li Z F, Lou Y L, Li Y, Xue D M, Chen Y, Wu C Y. 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment624, 1131–1139.

Wang Y L, Wu P N, Qiao Y B, Li Y M, Liu S M, Gao C K, Liu C S, Shao J, Yu H L, Zhao Z H, Guan X K, Wen P F, Wang T C. 2023. The potential for soil C sequestration and N fixation under different planting patterns depends on the carbon and nitrogen content and stability of soil aggregates. Science of the Total Environment897, 165430.

Xie Z, Tu S, Shah F, Xu C, Chen J, Han D, Liu G, Li H, Muhammad I, Cao W. 2016. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crops Research188, 142–149.

Xu X R, Zhang W J, Xu M G, Li S Y, An T T, Pei J B, Xiao J, Xie H T, Wang J K. 2016. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China. Science of the Total Environment572, 1101–1110.

Yan Z J, Zhou J, Liu C Y, Jia R, Mganga K Z, Yang L, Yang Y D, Peixoto L, Zang H D, Zeng Z H. 2023. Legume-based crop diversification reinforces soil health and carbon storage driven by microbial biomass and aggregates. Soil & Tillage Research234, 105848.

Yan Z J, Zhou J, Nie J W, Yang Y D, Zhao J, Zeng Z H, Marshall M R, Peixoto L, Zang H D. 2021. Do cropping system and fertilization rate change water-stable aggregates associated carbon and nitrogen storage? Environmental Science and Pollution Research International28, 65862–65871.

Yang C Q, Wang X J, Li J N, Zhang G W, Shu H M, Hu W, Han H Y, Liu R X, Guo Z C. 2024. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. Journal of Integrative Agriculture23, 669–679.

Yang X L, Xiong J R, Du T S, Ju X T, Gan Y T, Li S, Xia L L, Shen Y J, Pacenka S, Steenhuis T S, Siddique K H M, Kang S Z, Butterbach-Bahl K. 2024. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nature Communications15, 198.

Zhang D B, Yao P W, Zhao N, Cao W D, Zhang S Q, Li Y Y, Huang D L, Zhai B N, Wang Z H, Gao Y J. 2018. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma337, 425–433.

Zhang W J, Munkholm L J, Liu X, An T T, Xu Y D, Ge Z, Xie N H, Li A M, Dong Y Q, Peng C, Li S Y, Wang J K. 2023. Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: Evidence from one-year field experiment. Geoderma430, 116324.

Zhang X, Lassaletta L. 2022. Manure management benefits climate with limits. Nature Food3, 312–313.

Zhang X X, Gregory A S, Whalley W R, Coleman K, Illangasekare T H. 2021. Relationship between soil carbon sequestration and the ability of soil aggregates to transport dissolved oxygen. Geoderma403, 115370.

Zhang Y C, Zuo Q Y, Du B B, Chen W L, Wei D, Huang Q Y. 2018. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Science of the Total Environment635, 784–792.

Zhang Z H, Jun N, Liang H, Wei C L, Yun W, Liao Y L, Lu Y H, Zhou G G, Gao S J, Cao W D. 2022. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in South China. Journal of Integrative Agriculture22, 1529–1545.

Zhao H L, Shar A G, Li S, Chen Y L, Shi J L, Zhang X Y, Tian X H. 2018. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize–wheat double cropping system. Soil & Tillage Research175, 178–186.

Zhao X P, Hao C K, Zhang R Q, Jiao N Y, Tian J, Lambers H, Liang C, Cong W F, Zhang F S. 2023. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology and Biochemistry185, 109146.

Zhou P, Zhang X X, Pan G X. 2006. Effect of long-term fertilization on content of total and particulate organic carbon and their depth distribution of a paddy soil: An example of huangnitu from the Tai Lake region, China. Plant Nutrition & Fertilizer Science12, 765–771. (in Chinese)

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[3] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[4] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[5] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[6] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[7] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[8] Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang. Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2371-2388.
[9] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[10] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[11] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[12] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[13] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[14] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[15] Jienan Han, Ran Li, Ze Zhang, Shiyuan Liu, Qianqian Liu, Zhennan Xu, Zhiqiang Zhou, Xin Lu, Xiaochuan Shangguan, Tingfang Zhou, Jianfeng Weng, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jingyu Xu, Mingshun Li, Xinhai Li. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4496-4514.
No Suggested Reading articles found!