Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1577-1587    DOI: 10.1016/j.jia.2025.02.002
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks

Chao Ma1, 2*, Zhifeng He1, 2*, Jiang Xiang1, 2, Kexin Ding1, 2, Zhen Zhang1, 2, Chenglong Ye1, 2, Jianfei Wang1, 2, Yusef Kianpoor Kalkhajeh3#

1 Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

2 Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei 230036, China

3 Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, 325060 Ouhai, China

 Highlights 

Co-application of SDMI and straw is a climate-smart straw management practice.

SDMI-amended straw significantly increases SOC stock by 1.51% at ICNR>25.

EDSR, SDMIR, and MAP are drivers of SDMI-amended straw impacts on SOC stock with an ICNR>25.


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

众所周知,施用腐秆剂可以加速秸秆分解,但不同条件下,秸秆还田配施腐秆剂对土壤有机碳影响的潜在机制尚不清楚。本研究对公开发表86项研究的226组文献数据进行整合分析,以此来揭示相比秸秆还田,秸秆还田配施腐秆剂对土壤有机碳的影响。结果表明,相比秸秆单独还田,秸秆还田配施腐秆剂在初始碳氮比 (ICNR) > 25时,能显著提高1.51%的土壤有机碳储量(P < 0.05),而在ICNR 25时作用效果不显著。特别地,当ICNR > 25时,秸秆还田配施腐秆剂在温带大陆性气候条件、土壤pH > 7.5下对土壤有机碳储量的影响要显著高于在亚热带季风气候土壤pH 7.5下的影响。在农业管理措施方面,秸秆还田配施腐秆剂在旱地、翻耕还田、还田年限 ≥ 1年、秸秆还田量 > 6000 kg ha-1、腐秆剂用量> 30 kg ha-1下能显著土壤有机碳储量。当ICNR ≤  25时,仅在不同的秸秆还田方式下,秸秆还田配施腐秆剂才对土壤有机碳的影响存在显著差异。通过相对重要性分析,当ICNR > 25时,秸秆还田年限、腐秆剂用量、年均降雨量是秸秆还田配施腐秆剂对土壤有机碳储量的重要影响驱动因子。总的来说,秸秆还田配施腐秆剂在ICNR > 25时能显著提高土壤有机碳储量,且与还田年限呈正相关关系,与年均降雨量呈负相关关系。本研究结果为在区域性或更大范围内,通过秸秆还田配施腐秆剂改变土壤有机碳储量的管理提供了科学的依据。



Abstract  
Although the application of straw decomposing microorganism inoculants (SDMI) can accelerate straw decomposition, the underlying mechanisms affecting soil organic carbon (SOC) under different scenarios remain unclear.  We conducted a meta-analysis using 226 observations from 86 studies on SOC changes under straw return with or without SDMI applications.  Overall, our results indicated that straw with SDMI application increased the SOC stock by 1.51% at an initial carbon-to-nitrogen ratio (ICNR)>25 (P<0.05), while the effect of ICNR≤25 was insignificant.  In particular, at ICNR>25, application of SDMI-treated straw increased SOC stocks in northern temperate continental areas (NTC) higher than in subtropical monsoon regions (STM).  Furthermore, the straw with SDMI application increased higher SOC stocks in soils with pH>7.5 than those with pH≤7.5.  In terms of agricultural management practices, SOC stocks were significantly higher in straw buried (SB), the experimental duration of straw return (EDSR)≥1 year, the straw return amount (SRA)>6,000 kg ha–1, and the SDMI application rate (SDMIR)>30 kg ha–1 conditions.  The effect of straw with SDMI on SOC stocks under straw burying (SB) was significantly higher than that under straw mulching (SM) at ICNR≤25.  At ICNR>25, EDSR, SDMIR, and the mean annual precipitation (MAP) were the main drivers of the effect of SDMI addition to straw on SOC stocks.  Straw with SDMI induced SOC stock increases which increased with EDSR and decreased with increasing MAP.  These findings provide a scientific basis for decision-makers and stakeholders to improve soil C management via the application of SDMI-amended straw at both regional and large scales.  


Keywords:  carbon sequestration       meta-analysis       straw-decomposing microbial inoculants       soil organic carbon stock       straw return       straw retention  
Received: 03 April 2024   Accepted: 04 November 2024
Fund: 

This work was supported by the Key Science and Technology Project of Anhui Province, China (2023n06020056), the National Natural Science Foundation of China (32071628), and the Colleges and Universities Science Foundation of Anhui Province, China (2024AH020002).

About author:  #Correspondence Yusef Kianpoor Kalkhajeh, E-mail: ykianpoo@kean.edu * These authors contributed equally to this study.

Cite this article: 

Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. 2025. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks. Journal of Integrative Agriculture, 24(4): 1577-1587.

Abro S A, Tian X H,Wang X D, Wu F Q, Kuyide J E. 2011. Decomposition characteristics of maize (Zea mays. L.) straw with different carbon to nitrogen (C/N) ratios under various moisture regimes. African Journal of Biotechnology10, 10149–10156.

Adu M O, Yawson D O, Armah F A, Asare P A, Frimpong K A. 2018. Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agricultural Water Management197, 79–90.

Amsili J P, Kaye J P. 2021. Root traits of cover crops and carbon inputs in an organic grain rotation. Renewable Agriculture and Food Systems36, 182–191.

Bangert-Drowns R L, Hurley M M, Wilkinson B. 2004. The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. Review of Educational Research74, 29–58.

Berhane M, Xu M, Liang Z Y, Shi J L, Wei G H, Tian X H. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology26, 2686–2701.

Bracken M B. 1992. Statistical methods for analysis of effects of treatment in overviews of randomized trials. In: Sinclair J C, Bracken M B, eds., Effective Care of the Newborn Infant. Oxford University Press, Oxford, UK. pp. 13–20.

Calcagno V, de Mazancourt C. 2010. glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software34, 1–29.

Chen Y J, Zhou J H, Qiang L I, Xie Y, Liu J H. 2011. Decomposition characteristics of stalk decomposition accelerator on different crop-stalks. Hunan Agricultural Science1, 19–25. (in Chinese)

Chen Y S, Camps-Arbestain M, Shen Q H, Singh B, Cayuela M L. 2018. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutrient Cycling in Agroecosystems111, 103–125.

Colombi T, Walder F, Büchi L, Sommer M, Liu K, Six J, Van Der Heijden M G, Charles R, Keller, T. 2019. On-farm study reveals positive relationship between gas transport capacity and organic carbon content in arable soil. Soil5, 91–105.

Dai Z M, Su W Q, Chen H H, Barberan A, Zhao H C, Yu M J, Yu L, Brookes P C, Schadt C W, Chang S X. 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology24, 3452–3461.

Eiland F, Leth M, Klamer M, Lind A M, Jensen H, Iversen J. 2001. C and N turnover and lignocellulose degradation during composting of miscanthus straw and liquid pig manure. Compost Science & Utilization9, 186–196.

Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, Scialabba N E H, Niggli U. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences of the United States of America109, 18226–18231.

Gomez-Munoz B, Jensen L S, Munkholm L, Olesen J E, Hansen E M, Bruun S. 2021. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Science Society of America Journal85, 1465–1478.

Guan X K, Wei L, Turner N C, Ma S C, Yang M D, Wang T C. 2020. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. Journal of Cleaner Production250, 119514.

Koricheva J, Gurevitch J. 2014. Uses and misuses of meta-analysis in plant ecology. Journal of Ecology102, 828–844.

Halder M, Ahmad S J, Rahman T, Joardar J C, Siddique M A B, Islam M S, Islam M U, Liu S, Rabbi S, Peng X. 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Regional32, e00620.

Halvorson A D, Wienhold B J, Black A L. 2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Science Society of America Journal66, 906–912.

Han W, He M. 2010. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology, 101, 3724–3731.

Hedges L V, Olkin I. 1985. Statistical Methods for Meta-Analysis. Academic Press, New York.

Huang T, Yang N, Lu C, Qin X, Siddique K H. 2021. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil and Tillage Research214, 105171.

Huang Y, Zou J, Zheng X, Wang Y, Xu X. 2004. Nitrous oxideemissions as influenced by amendment of plant residues with different C: N ratios. Soil Biology Biochemistry36, 973–981.

Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food and Energy Security9, e200.

Kalkhajeh Y K, He Z F, Yang X R, Lu Y, Zhou J, Gao H J, Ma C. 2021. Co-application of nitrogen and straw-decomposing microbial inoculant enhanced wheat straw decomposition and rice yield in a paddy soil. Journal of Agriculture and Food Research4, 100134.

Kuang E J, Chi F Q, Jeng A S, Su Q R, Zhang J M. 2014. A comparison of different methods of decomposing maize straw in China. Acta Agriculturae Scandinavica (Section B: Soil & Plant Science), 63, 186–194.

Lee J, Hopmans J W, Rolston D E, Baer S G, Six J. 2009. Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems & Environment12, 251–256.

Li M HTang C GChen XHuang S WZhao W WCai D QWu Z YWu L F. 2019. High performance bacteria anchored by nanoclay to boost straw degradation. Materials12, 1148.

Li T, Ge X Y, He C E, Ou Y Z. 2016. Effects of straw retention with mixing maize straw by alfalfa straw or N fertilizer on carbon and nitrogen mineralization and microbial functional diversity. Journal Agro-Environment Science35, 2377–2384. (in Chinese)

Liu J, Wang X, Zhang H, Lu Y, Kalkhajeh Y K, Hu H, Huang J. 2024. Long-term in situ straw returning increased soil aggregation and aggregate associated organic carbon fractions in a paddy soil. Heliyon10, e32392.

Liu T, Wang L, Feng X, Zhang J, Ma T, Wang X, Liu Z. 2018. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands. Biogeosciences15, 1627–1641.

Ma C, Zhou J, Zheng X B, Liu M Q, Li H X, Jiang Z S, Wang W G. 2012. Effects of returning rice straw into field on soil nutrients and wheat yields under promoting decay condition. Soils44, 30–35. (in Chinese)

Makarov M I, Mulyukova O S, Malysheva T I, Menyailo O V. 2013. Influence of drying of the samples on the transformation of nitrogen and carbon compounds in mountain-meadow alpine soils. Eurasian Soil Science46, 778–787.

Mbanjwa V E, Hughes J C, Muchaonyerwa P. 2022. Organic carbon and aggregate stability of three contrasting soils as affected by arable agriculture and improved pasture in northern KwaZulu-Natal, South Africa. Journal of Soil Science and Plant Nutrition22, 2378–2391.

Mustafa A, Minggang X, Shah S A A, Abrar M M, Nan S, Baoren W, Zejiang C, Saeed Q, Naveed M, Mehmood K, Núñez-Delgado A. 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management270, 110894.

Nelson D W, Sommers L E. 1996. Total Carbon, Organic Carbon, and Organic Matter, Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI, USA. pp. 961–1010.

NSCO (National Soil Census Office). 1998. China Soil. Agriculture Press, Beijing, China. (in Chinese)

Partey S T, Preziosi R F, Robson G D. 2014. Improving maize residue use in soil fertility restoration by mixing with residues of low C-to-N ratio: Effects on C and N mineralization and soil microbial biomass. Journal of Soil Science and Plant Nutrition14, 518–531.

Powlson D, Riche A, Coleman K, Glendining M, Whitmore A. 2008. Carbon sequestration in European soils through straw incorporation: Limitations and alternatives. Waste Management28, 741–746.

Prior S A, Torbert H A, Runion G B, Rogers H H, Ort D R, Nelson R L. 2006. Free-air carbon dioxide enrichment of soybean. Journal of Environmental Quality35, 1470–1477.

Qin S J, Jiao K B, Lyu D G, Shi L, Liu L Z. 2015. Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd. Archives of Agronomy and Soil Science61, 173–184.

Raaijmakers J M, Mazzola M. 2016. Soil immune responses Soil microbiomes may be harnessed for plant health. Science352, 1392–1393.

Rosenberg M S, Adams D C, Gurevitch J. 1997. Metawin: Statistical Software for Meta-Analysis with Resampling Tests. Sinauer Asso-ciates, Sunderland, MA, USA.

Sheetal B, Mans I R, Babita K, Meenakshi N. 2020. Synergistic effect of fungal consortia and C/N ratio variation on rice straw degradation. Nature Environment and Pollution Technology19, 1831–1839.

Sousa J G D, Cherubin M R, Oliveira B G, Cerri C E P, Cerri C C, Feigl B J. 2018. Three-year soil carbon and nitrogen responses to sugarcane straw management. Bioenergy Research11, 249–261.

Terrer C, Vicca S, Hungate B A, Phillips R P, Prentice I C. 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science353, 72–74.

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software36, 1–48.

Wang S, Yao X, Zhang Z, He X, Ye S. 2020. Soil aggregation and aggregate-related exchangeable base cations under different aged tea (Camellia sinensis L.) plantations in the hilly regions of southern Guangxi, China. Soil Science and Plant Nutrition66, 636–644.

Wang X, Wang X X, Geng P, Yang Q, Chen K, Liu N, Fan Y L, Zhan X M, Han X R. 2021. Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility. Scientific Reports11, 15495.

Wang X J, Jia Z K, Liang L Y, Zhao Y F, Yang B P, Ding R X, Wang J P, Nie J F. 2018. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Research218, 11–17.

Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis (Use R!). Springer Press, Berlin, Germany.

Yang X R, Xu B, He Z F, Wu J, Zhuang R H, Ma C, Cai R S, Kalkhajeh, Y K, Ye X X, Zhu L. 2020. Impacts of decomposing microorganism inoculum on straw decomposition and crop yield in China: A meta-analysis. Scientia Agricultura Sinica53, 1359–1367. (in Chinese)

Ying H, Yin Y L, Zheng H F, Wang Y C, Zhang Q S, Xue Y F, Stefanovski D, Cui Z L, Dou Z X. 2019. Newer and select maize, wheat, and rice varieties can help mitigate N footprint while producing more grain. Global Change Biology25, 4273–4281.

Zhang T A, Chen H Y H, Ruan H H. 2018. Global negative effects of nitrogen deposition on soil microbes. ISME Journal12, 1817–1825.

Zhang Y Y, Cao H Y. 2019. Effect of Straw decomposition agent on decomposition of maize straw and growth of next crop wheat. China. China Agricultural Technology Extension35, 57–59. (in Chinese)

Zhao X, Liu B Y, Liu S L, Qi J Y, Wang X, Pu C, Li S S, Zhang X Z, Yang X G, Lal R, Chen F, Zhang H L. 2019. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degradation & Development31, 694–709.

Zhu H J, Yan X M, He C F, He J Z. 2014. Effect of returning straw on soil carbon cycle in cropland ecosystem. Ecology and Environmental Sciences23, 344–351. (in Chinese)

[1] Jinwen Pang, Zhonghong Tian, Mengjie Zhang, Yuhao Wang, Tianxiang Qi, Qilin Zhang, Enke Liu, Weijun Zhang, Xiaolong Ren, Zhikuan Jia, Kadambot H. M. Siddique, Peng Zhang. Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland: The promising role of biochar application with biodegradable film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(2): 517-526.
[2] Jinpeng Zou, Lulin Shen, Fang Wang, Hong Tang, Ziyang Zhou. Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3215-3233.
[3] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[4] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[5] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[6] Jinxia Wang, Qiu Huang, Kai Peng, Dayang Yang, Guozhen Wei, Yunfei Ren, Yixuan Wang, Xiukang Wang, Nangia Vinay, Shikun Sun, Yanming Yang, Fei Mo. Biochar induced trade-offs and synergies between ecosystem services and crop productivity[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3882-3895.
[7] Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2848-2864.
[8] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[9] ZOU Xiao-xia, HUANG Ming-ming, LIU Yan, SI Tong, ZHANG Xiao-jun, YU Xiao-na, GUO Feng, WAN Shu-bo. Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3430-3443.
[10] BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3517-3534.
[11] XING Ting-ting, CAI An-dong, LU Chang-ai, YE Hong-ling, WU Hong-liang, HUAI Sheng-chang, WANG Jin-yu, XU Ming-gang, LIN Qi-mei . Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1488-1500.
[12] WANG Han-jie, Jingjing WANG, Xiaohua YU. Wastewater irrigation and crop yield: A meta-analysis[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1215-1224.
[13] CAO Han-bing, XIE Jun-yu, HONG Jie, WANG Xiang, HU Wei, HONG Jian-ping. Organic matter fractions within macroaggregates in response to long-term fertilization in calcareous soil after reclamation[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1636-1648.
[14] ZHANG Zhi, CONG Ri-huan, REN Tao, LI Hui, ZHU Yun, LU Jian-wei. Optimizing agronomic practices for closing rapeseed yield gaps under intensive cropping systems in China[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1241-1249.
[15] GONG Qian-chun, YU Hong-xiao, MAO Xin-rui, QI Hui-dong, SHI Yan, XIANG Wei, CHEN Qing-shan,. Meta-analysis of soybean amino acid QTLs and candidate gene mining[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1074-1084.
No Suggested Reading articles found!