Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 4048-4062    DOI: 10.1016/j.jia.2024.12.018
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition

Tianqi Wang1, 2, 3*, Jihui Tian1*, Xing Lu1, 2, 3*, Chang Liu1, 2, 3, Junhua Ao4, Huafu Mai1, 2, 3, Jinglin Tan1, 2, 3, Bingbing Zhang1, 2, 3, Cuiyue Liang1, 2, 3#, Jiang Tian1, 2, 3#

1 Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China

3 Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou 510642, China

4 Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China

 Highlights 
The effects of soybean varieties BD2 and YC03-3 on plant N and P uptake, growth, yield and the rhizosphere microorganism community were compared in a maize/soybean intercropping system
BD2/maize intercropping enhanced growth and yield more than YC03-3/maize.
BD2/maize intercropping showed alteration in root traits and root–root avoidance, and reduced competition between species unlike in YC03-3/maize intercropping.
BD2/maize intercropping caused more beneficial rhizobacteria recruitment than YC03-3/maize intercropping
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米/大豆间作体系在发展中国家得到普遍应用,但鲜有研究解析玉米与不同大豆品种间作时根-根互作所介导的养分效率与根际微生物组成的差异。本研究通过田间试验比较了两个大豆(Glycine max)品种BD2YC03-3,以及一个华珍”品种鲜食玉米(Zea mays)在单间作栽培模式下的生长产量变化。与单作相比,BD2/玉米间作两种作物的植株生物量和氮含量均显著提高,但在YC03-3/玉米间作中则无明显影响。与单作相比,与玉米间作后BD2产量提高了37.5%。此外,玉米与BD2间作后根长增加了19.2%-29.1%间作BD2的根体积提高19.0%-39.4%YC03-3/玉米间作中根系性状无显著变化。同时,玉米与BD2间作时表现出根系回避现象,而与YC03 - 3间作时则表现为空间竞争。16S rRNA测序结果表明,与单作体系相比,BD2/玉米间作中的根际细菌群落组成比YC03-3/玉米间作中的变化更为显著。在BD2/玉米间作中,大部分BD2根际富集优势细菌与生物量及磷氮含量呈正相关。而BD2间作的玉米在根际招募根瘤菌目(Rhizobiales)和变形菌门(Proteobacteria细菌,它们分别与玉米生物量氮含量及土壤速效氮呈正相关。总之,不同大豆品种通过根-根互作和改变根际细菌群落组成调控了玉米/大豆间作的资源利用优势。本文强调了根系性状与根际细菌群落之间的联系,体现了酸性土壤中通过选择合适的作物品种来优化间作体系的重要性。



Abstract  

Maize/soybean intercropping systems are commonly used in developing countries, but few studies have been performed to elucidate the differences in nutrient efficiency and rhizosphere microbiome, especially when maize is intercropped with different soybean varieties.  In this study, field experiments were conducted to compare the growth and yield of two soybean (Glycine max) varieties, BD2 and YC03-3, and one maize (Zea mays) variety, Huazhen, in mono-cropped and intercropped cultures.  The plant biomass and N content of both crops in BD2/maize intercropping were significantly improved compared to their monoculture, but no such effects were observed in the plants of YC03-3/maize intercropping.  The yield of BD2 intercropped with maize exhibited a 37.5% increment above that of BD2 in monoculture.  Moreover, 19.2–29.1% longer root length of maize and 19.0–39.4% larger root volume of BD2 were observed in BD2/maize intercropping than in monoculture, but no growth advantage was observed in YC03-3/maize intercropping.  Maize showed root avoidance when intercropped with BD2, but space competition when intercropped with YC03-3.  16S rRNA amplicon sequencing showed that compared with the monoculture system, rhizobacteria community composition in BD2/maize intercropping changed more significantly than that of the YC03-3/maize intercropping system.  In BD2/maize intercropping, most of the rhizobacteria community biomarker bacteria of BD2 were positively correlated with plant biomass, as well as plant P and N content.  Maize tended to recruit Rhizobiales and Proteobacteria, which showed positive correlation with plant biomass and N content, respectively, as well as soil available N.  In conclusion, soybean varieties determined the advantages of maize/soybean intercropping through root–root interactions and modification of rhizobacteria communities.  Our insight emphasizes a linkage between root traits and the rhizobacteria community, which shows the importance of optimizing intercropping systems by selection of appropriate crop varieties.

Keywords:  maize/soybean intercropping       roots       bacterial community       soybean variety       maize  
Received: 14 October 2024   Online: 16 December 2024   Accepted: 06 November 2024
Fund: 

This work was supported by the National Key Research and Development Program of China (2021YFF1000504 and 2023YFD1901300), the National Natural Science Foundation of China (32172658, 32172659 and 32302662), the Natural Science Foundation of Guangdong Province, China (2021A1515010826).

About author:  #Correspondence Cuiyue Liang, E-mail: liangcy@scau.edu.cn; Jiang Tian, E-mail: jtian@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. 2025. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition. Journal of Integrative Agriculture, 24(10): 4048-4062.

Alloui T, Boussebough I, Chaoui A, Nouar A Z, Chettah M C. 2015. Usearch: A meta search engine based on a new result merging strategy. In: 7th International Joint Conference on Knowledge DiscoveryKnowledge Engineering and Knowledge Management (IC3K). Institute of Electrical and Electronics Engineers, Lisbon. pp. 531–536.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

Brooker R W, George T S, Homulle Z, Karley A J, Newton A C, Pakeman R J, Schöb C. 2021. Facilitation and biodiversity-ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology109, 2054–2067.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

Chen Q Q, Zhao Q, Xie B X, Lu X, Guo Q, Liu G X, Zhou M, Tian J H, Lu W G, Chen K, Tian J, Liang C Y. 2024. Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils. Journal of Integrative Agriculture23, 1685–1702.

Chen X, Chen J, Cao J J. 2023. Intercropping increases soil N-targeting enzyme activities: A meta-analysis. Rhizosphere26, 100686.

Chen Z J, Cui Q Q, Liang C Y, Sun L L, Tian J, Liao H. 2011. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics11, 4648–4659.

van Dijk M, Morley T, Rau M L, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food2, 494–501.

Dong D F, Peng X X, Yan X L. 2004. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiologia Plantarum122, 190–199.

Dorn-In S, Bassitta R, Schwaiger K, Bauer J, Hölzel C S. 2015. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. Journal of Microbiological Methods113, 50–56.

Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Su K, Liu W G, Yang W Y. 2018. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture17, 747–754.

Erdal S, Pamukcu M, Curek M, Kocaturk M, Dogu O Y. 2016. Silage yield and quality of row intercropped maize and soybean in a crop rotation following winter wheat. Archives of Agronomy and Soil Science62, 1487–1495.

Fang S Q, Gao X, Deng Y, Chen X P, Liao H. 2011. Crop root behavior coordinates phosphorus status and neighbors: From field studies to three-dimensional in situ reconstruction of root system architecture. Plant Physiology155, 1277–1285.

Huang J Q, Ye J, Gao W H, Liu C W, Price G W, Li Y C, Wang Y X. 2023. Tea biochar-immobilized Ralstonia Bcul-1 increases nitrate nitrogen content and reduces the bioavailability of cadmium and chromium in a fertilized vegetable soil. Science of the Total Environment866, 161381.

Jansson J K, McClure R, Egbert R G. 2023. Soil microbiome engineering for sustainability in a changing environment. Nature Biotechnology41, 1716–1728.

Kermah M, Franke A C, Adjei-Nsiah S, Ahiabor B D K, Abaidoo R C, Giller K E. 2017. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research213, 38–50.

Kolde R. 2019. Pheatmap: Pretty heatmaps. R package version 1.0.12. [2024-5-20]. https://CRAN.R-project.org/package=pheatmap

Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America113, 6496–6501.

Li C J, Hoffland E, Kuyper T W, Yu Y, Zhang C C, Li H G, Zhang F S, Werf W. 2020. Syndromes of production in intercropping impact yield gains. Nature Plants6, 653–660.

Li J, Han S J, Xu R H, Zhang X C, Liang J Q, Wang M X, Han B Y. 2024. Insight into the effect of geographic location and intercropping on contamination characteristics and exposure risk of phthalate esters (PAEs) in tea plantation soils. Journal of Integrative Agriculture23, 3896–3911.

Li L, Sun J H, Zhang F S, Guo T W, Bao X G, Smith F A, Smith S E. 2006. Root distribution and interactions between intercropped species. Oecologia147, 280–290.

Li L, Tilman D, Lambers H, Zhang F S. 2014. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist203, 63–69.

Li Q S, Chen J, Wu L K, Luo X M, Li N, Arafat Y, Lin S, Lin W X. 2018. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. International Journal of Molecular Sciences19, 622.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, et al. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability4, 943–950.

Li X Y, Simunek J, Shi H B, Yan J W, Peng Z Y, Gong X W. 2017. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch. European Journal of Agronomy83, 47–56.

Liu J, Yang C Q, Zhang Q, Lou Y, Wu H J, Deng J C, Yang F, Yang W Y. 2016. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading. Food Chemistry207, 107–114.

Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T W, Wu Y S, Zhang C Y, Yang W Y. 2017a. Changes in light environment, morphology, growth and yield of soybean in maize–soybean intercropping systems. Field Crops Research200, 38–46.

Liu X, Rahman T, Yang F, Song C, Yong T W, Liu J, Zhang C Y, Yang W Y. 2017b. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE12, e0169218.

Ma H Y, Surigaoge S, Xu Y, Li Y C, Christie P, Zhang W P, Li L. 2024. Responses of soil microbial community diversity and co-occurrence networks to interspecific interactions in soybean/maize and peanut/maize intercropping systems. Applied Soil Ecology203, 105613.

Martin M. 2011. CUTADAPT removes adapter sequences from high-throughput sequencing reads. EMBnet Journal17, 10–12.

Mulani R, Mehta K, Saraf M, Goswami D. 2021. Decoding the mojo of plant-growth-promoting microbiomes. Physiological and Molecular Plant Pathology115, 101687.

Lo Presti E, Badagliacca G, Romeo M, Monti M. 2021. Does legume root exudation facilitate itself P uptake in intercropped wheat? Journal of Soil Science and Plant Nutrition21, 3269–3283.

Qiao M J, Sun R B, Wang Z X, Dumack K, Xie X G, Dai C C, Wang E T, Zhou J Z, Sun B, Peng X H, Bonkowski M, Chen Y. 2024. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications15, 2924.

Raza M A, Feng L Y, Werf W, Cai G R, Khalid M H B, Iqbal N, Hassan M J, Meraj T A, Naeem M, Khan I, Rehman S, Ansar M, Ahmed M, Yang F, Yang W Y. 2019. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food and Energy Security8, e170.

Ren Y Y, Wang X L, Zhang S Q, Palta J A, Chen Y L. 2017. Influence of spatial arrangement in maize–soybean intercropping on root growth and water use efficiency. Plant and Soil415, 131–144.

Revelle W R. 2023. Psych: Procedures for psychological, psychometric, and personality research. R package version 2.3.3. [2024-4-14]. https://CRAN.R-project.org/package=psych

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biology12, R60.

Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. 2023. Border row effects on the distribution of root and soil resources in maize–soybean strip intercropping systems. Soil and Tillage Research233, 105812.

Smercina D N, Evans S E, Friesen M L, Tiemann L K. 2021. Temporal dynamics of free-living nitrogen fixation in the switchgrass rhizosphere. GCB Bioenergy13, 1814–1830.

Song Q, Deng X, Song R Q, Song X S. 2023. Three plant growth-promoting rhizobacteria regulate the soil microbial community and promote the growth of maize seedlings. Journal of Plant Growth Regulation42, 7418–7434.

Swarnalakshmi K, Yadav V, Tyagi D, Dhar D W, Kannepalli A, Kumar S. 2020. Significance of plant growth promoting rhizobacteria in grain legumes: Growth promotion and crop production. Plants9, 1596.

Wang G H, Sheng L C, Zhao D, Sheng J D, Wang X R, Liao H. 2016. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Frontiers in Plant Science7, 1901.

Wang S S, Meade A, Lam H M, Luo H W. 2020. Evolutionary timeline and genomic plasticity underlying the lifestyle diversity in Rhizobiales. Msystems5, e00438–20.

Werner J J, Koren O, Hugenholtz P, DeSantis T Z, Walters W A, Caporaso J G, Angenent L T, Knight R, Ley R E. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME Journal6, 94–103.

Wu Y S, He D, Wang E L, Liu X, Huth N I, Zhao Z G, Gong W Z, Yang F, Wang X C, Yong T W, Liu J, Liu W G, Du J B, Pu T, Liu C Y, Yu L, Werf W, Yang W Y. 2021. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Research265, 108122.

Xiang S Y, Yan S, Lin Q X, Huang R, Wang R H, Wei R P, Wu G D, Zheng H Q. 2023. Characterization of the root nodule microbiome of the exotic tree Falcataria falcata (Fabaceae) in Guangdong, southern China. Diversity15, 1092.

Xiao R H, Man X L, Duan B X, Cai T J, Ge Z X, Li X F, Vesala T. 2022. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biology and Biochemistry166, 108572.

Xu Z, Li C J, Zhang C C, Yu Y, Werf W, Zhang F S. 2020. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research246, 107661.

Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: Far-red ratio. Field Crops Research155, 245–253.

Yang F, Wang X C, Liao D P, Lu F Z, Gao R C, Liu W G, Yong T W, Wu X L, Du J B, Liu J, Yang W Y. 2015. Yield response to different planting geometries in maize–soybean relay strip intercropping systems. Agronomy Journal107, 296–304.

Yin W, Chai Q, Zhao C, Yu A Z, Fan Z L, Hu F L, Fan H, Guo Y, Coulter J A. 2020. Water utilization in intercropping: A review. Agricultural Water Management241, 106335.

Zhang S, Li S M, Meng L B, Liu X D, Zhang Y H, Zhao S C, Zhao H B. 2024. Root exudation under maize/soybean intercropping system mediates the arbuscular mycorrhizal fungi diversity and improves the plant growth. Frontiers in Plant Science15, 1375194.

Zhang T T, Liu Y L, Ge S Q, Peng P, Tang H, Wang J W. 2024. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition. Journal of Integrative Agriculture23, 4216–4236.

Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. 2022. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agriculture21, 1755–1771.

[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[4] Yang Chen, Xuyu Feng, Xiao Zhao, Xinmei Hao, Ling Tong, Sufen Wang, Risheng Ding, Shaozhong Kang. Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3242-3263.
[5] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[6] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[7] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[8] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[9] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[10] Jing Tian, Rong Tian, Juanyan Wu, Liying Huang, Jianguo Zhang. Gas production characteristics of oats and tritical silages and techniques for reducing gas emissions[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1246-1258.
[11] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[12] Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 739-753.
[13] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[14] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[15] Jiayue He, Yanhua Chen, Yanrong Hao, Dili Lai, Tanzim Jahan, Yaliang Shi, Hao Lin, Yuqi He, Md. Nurul Huda, Jianping Cheng, Kaixuan Zhang, Jinbo Li, Jingjun Ruan, Meiliang Zhou. Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3739-3756.
No Suggested Reading articles found!