Bo K L, Miao H, Wang M, Xie X X, Song Z C, Xie Q, Shi L X, Wang W P, Wei S, Zhang S P, Gu X F. 2019. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics, 132, 27–40.
Che G, Zhang X L. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology, 47, 38–46.
Chen C, Cui Q Z, Huang S W, Wang S H, Liu X H, Lu X Y, Chen H M, Tian Y. 2018. An EMS mutant library for cucumber. Journal of Integrative Agriculture, 17, 1612–1619.
Chen C H, Yin S, Liu X W, Liu B, Yang S, Xue S D, Cai Y L, Black K, Liu H L, Dong M M, Zhang Y Q, Zhao B Y, Ren H Z. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein Mict. Plant Physiology, 171, 1156–1168.
Chen Y, Wen H, Pan J, Du H, Zhang K, Zhang L, Yu Y, He H, Cai R, Pan J, Wang G. 2021. CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics, 134, 2141–2150.
Coulondre C, Miller J H. 1977. Genetic studies of the lac repressor: IV. Mutagenic specificity in the lacI gene of Escherichia coli. Journal of Molecular Biology, 117, 577–606.
Cui J Y, Miao H, Ding L H, Wehner T C, Liu P N, Wang Y, Zhang S P, Gu X F. 2016. A new glabrous gene (csgl3) identified in trichome development in cucumber (Cucumis sativus L.). PLoS ONE, 11, e148422.
Du H, Wang G, Pan J, Chen Y, Xiao T T, Zhang L Y, Zhang K Y, Wen H F, Xiong L R, Yu Y, He H L, Pan J S, Cai R. 2020. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. Journal of Experimental Botany, 71, 6297–6310.
Gebretsadik K, Qiu X Y, Dong S Y, Miao H, Bo K L. 2021. Molecular research progress and improvement approach of fruit quality traits in cucumber. Theoretical and Applied Genetics, 134, 3535–3552.
Griess E A, Rensing S A, Grasser K D, Maier U G, Feix G. 1993. Phylogenetic relationships of HMG box DNA-binding domains. Journal of Molecular Evolution, 37, 204–210.
Grumet R, Lin Y, Rett-Cadman S, Malik A. 2023. Morphological and genetic diversity of cucumber (Cucumis sativus L.) fruit development. Plants-Basel, 12, https://doi.org/10.3390/plants12010023.
Hansen F T, Madsen C K, Nordland A M, Grasser M, Merkle T, Grasser K D. 2008. A novel family of plant DNA-binding proteins containing both HMG-box and AT-rich interaction domains. Biochemistry, 47, 13207–13214.
Kortschak R D, Tucker P W, Saint R. 2000. ARID proteins come in from the desert. Trends in Biochemical Sciences, 25, 294–299.
Li Q, Cao C X, Zhang C J, Zheng S S, Wang Z H, Wang L N, Ren Z H. 2015. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. Journal of Experimental Botany, 66, 2515–2526.
Liu M Y, Zhang C J, Duan L X, Luan Q Q, Li J L, Yang A G, Qi X Q, Ren Z H. 2019. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. Journal of Experimental Botany, 70, 69–84.
Liu X P, Yang X Y, Xie Q, Miao H, Bo K L, Dong S Y, Xin T X, Gu X F, Sun J Q, Zhang S P. 2022. NS encodes an auxin transporter that regulates the ‘numerous spines’ trait in cucumber (Cucumis sativus) fruit. The Plant Journal, 110, 325–336.
Liu X W, Wang T, Bartholomew E, Black K, Dong M M, Zhang Y Q, Yang S, Cai Y L, Xue S D, Weng Y Q, Ren H Z. 2018. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research, 5, 31.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.
Okagaki R J, Neuffer M G, Wessler S R. 1991. A deletion common to two independently derived waxy mutations of maize. Genetics, 128, 425–431.
Pan J, Song J, Sharif R, Xu X, Li S, Chen X. 2024. A mutation in the promoter of the yellow stripe-like transporter gene in cucumber results in a yellow cotyledon phenotype. Journal of Integrative Agriculture, 23, 849–862.
Pan J, Wang G, Wen H F, Du H, Lian H L, He H L, Pan J S, Cai R. 2018. Differential gene expression caused by the F and M loci provides insight into ethylene-mediated female flower differentiation in cucumber. Frontiers in Plant Science, 9, 1091.
Pan Y P, Bo K L, Cheng Z H, Weng Y Q. 2015. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biology, 15, 302.
Pedersen D S, Merkle T, Marktl B, Lildballe D L, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser K D. 2010. Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins. Plant Physiology, 154, 1831–1841.
Postnikov Y V, Bustin M. 2016. Functional interplay between histone H1 and HMG proteins in chromatin. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1859, 462–467.
Schöb H, Kunz C, Meins Jr F. 1997. Silencing of transgenes introduced into leaves by agroinfiltration: A simple, rapid method for investigating sequence requirements for gene silencing. Molecular and General Genetics, 256, 581–585.
Stros M, Launholt D, Grasser K D. 2007. The HMG-box: A versatile protein domain occurring in a wide variety of DNA-binding proteins. Cellular and Molecular Life Sciences, 64, 2590–2606.
Wang Y H, Bo K L, Gu X F, Pan J S, Li Y H, Chen J F, Wen C L, Ren Z H, Ren H Z, Chen X H, Grumet R, Weng Y Q. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research, 7, 3.
Wang Y L, Nie J T, Chen H M, Guo C L, Pan J, He H L, Pan J S, Cai R. 2016. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theoretical and Applied Genetics, 129, 305–316.
Wang Z Y, Wang L M, Han L J, Cheng Z H, Liu X F, Wang S Y, Liu L, Chen J C, Song W Y, Zhao J Y, Zhou Z Y, Zhang X L. 2021. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. Plant Physiology, 187, 1619–1635.
Wilsker D, Patsialou A, Dallas P B, Moran E. 2002. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth & Differentiation, 13, 95–106.
Wilsker D, Probst L, Wain H M, Maltais L, Tucker P W, Moran E. 2005. Nomenclature of the ARID family of DNA-binding proteins. Genomics, 86, 242–251.
Xia C, Wang Y J, Liang Y, Niu Q K, Tan X Y, Chu L C, Chen L Q, Zhang X Q, Ye D. 2014. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. The Plant Journal, 79, 741–756.
Xie Q, Liu P N, Shi L X, Miao H, Bo K L, Wang Y, Gu X F, Zhang S P. 2018. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theoretical and Applied Genetics, 131, 1239–1252.
Yang S, Cai Y L, Liu X W, Dong M M, Zhang Y Q, Chen S Y, Zhang W B, Li Y J, Tang M, Zhai X L, Weng Y Q, Ren H Z. 2018. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany, 69, 1887–1902.
Yang S, Wang Y L, Zhu H Y, Zhang M J, Wang D K, Xie K X, Fan P F, Dou J L, Liu D M, Liu B, Chen C H, Yan Y, Zhao L J, Yang L M. 2022. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. New Phytologist, 233, 2643–2658.
Yang X Q, Zhang W W, He H L, Nie J T, Bie B B, Zhao J L, Ren G L, Li Y, Zhang D, Pan J S, Cai R. 2014. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal, 78, 1034–1046.
Zhang H Y, Wang L N, Zheng S S, Liu Z Z, Wu X Q, Gao Z H, Cao C X, Li Q, Ren Z H. 2016. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 129, 1289–1301.
Zhang L Y, Lv D, Pan J, Zhang K Y, Wen H F, Chen Y, Du H, He H L, Cai R, Pan J S, Wang G. 2021. A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC Plant Biology, 21, 182.
Zhang S P, Liu S L, Miao H, Wang M, Liu P N, Wehner T C, Gu X F. 2016. Molecular mapping and candidate gene analysis for numerous spines on the fruit of cucumber. Journal of Heredity, 107, 471–477.
Zhang W W, Chen Y, Zhou P, Bao W M, Yang X Q, Xu T B, She W W, Xu L Q, Yu P G, Pan J S. 2018. Identification and fine mapping of molecular markers closely linked to fruit spines size ss gene in cucumber (Cucumis sativus L.). Euphytica, 214, 213.
Zhang W W, He H L, Guan Y, Du H, Yuan L H, Li Z, Yao D Q, Pan J S, Cai R. 2010. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 120, 645–654.
Zhang Y Q, Shen J J, Bartholomew E S, Dong M M, Chen S Y, Yin S, Zhai X L, Feng Z X, Ren H Z, Liu X W. 2021. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. The Plant Journal, 106, 753–765.
Zhao J L, Pan J S, Guan Y, Zhang W W, Bie B B, Wang Y L, He H L, Lian H L, Cai R. 2015. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. Journal of Integrative Plant Biology, 57, 925–935.
Zhao L J, Zhu H Y, Zhang K G, Wang Y L, Wu L, Chen C H, Liu X W, Yang S, Ren H Z, Yang L M. 2020. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber. Plant Science, 300, 9.
|