Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1080-1091    DOI: 10.1016/j.jia.2024.11.024
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
FS2 encodes an ARID-HMG transcription factor that regulates fruit spine density in cucumber

Hui Du1*, Yue Chen1, 2*, Liangrong Xiong1, Juan Liu1, Keyan Zhang1, Ming Pan1, 3, Haifan Wen1, Huanle He1, Run Cai1, Junsong Pan1, 4#, Gang Wang1#

1 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

2 Department of Plant Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China

3 Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China

4 Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai 200240, China

 Highlights 
A novel few spines mutant (fs2) was isolated from North China-type cucumber inbred line WD1 with high density fruit spines, by an ethyl methanesulfonate (EMS) mutagenesis treatment.
FS2 encodes an ARID-HMG transcription factor that regulates fruit spine initiation by activating the expression of the Tril gene in cucumber.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果刺密度是黄瓜重要的商品性状,然而种植面积较大的华北型黄瓜品种大都是密刺表型,这直接影响了黄瓜的外观品质、储藏和运输。在本研究中,我们通过EMS诱变,从华北型密刺品种WD1中鉴定到一个新的少刺突变体(few spines, fs2)。遗传分析发现fs2的少刺表型是由单基因调控的。利用1802F2420BC1群体对fs2位点进行精细定位,发现FS2的候选基因Csa4G652850编码一个ARID-HMG转录因子,包含一个A/T-rich interaction domain (ARID)结构域和一个high mobility group box (HMG)结构域。FS2候选基因编码区域的一个SNP (C to T)和一个Indel (40 bp deletion)分别导致fs2突变体中氨基酸变异和翻译提前终止。FS2候选基因在顶芽和幼嫩的子房中高表达。此外,我们发现FS2通过激活Tril基因的表达参与黄瓜果刺起始调节。本研究不仅为阐释黄瓜果刺发育的分子机制提供了重要参考,也为黄瓜果实外观品质育种提供了重要资源。



Abstract  
Fruit spine density is an important commercial trait for cucumber (Cucumis sativus L.).  Most North China-type cucumbers that are grown over large areas have a dense-spine phenotype, which directly affects the appearance quality, storage, and transportation of the fruits.  Here, we isolated a novel few spines mutant (fs2) from the wild-type (WT) inbred line WD1, a North China-type cucumber with high density fruit spines, by an ethyl methanesulfonate (EMS) mutagenesis treatment.  Genetic analysis revealed that the phenotype of fs2 is controlled by a single recessive nuclear gene.  We fine-mapped the fs2 locus using F2 and BC1 populations (1,802 and 420 individuals, respectively), which showed that the candidate gene of FS2 (Csa4G652850) encodes an ARID-HMG transcription factor containing an AT-rich interaction domain (ARID) and a high mobility group box domain (HMG).  One SNP (C to T) and one InDel (a 40-bp deletion) in the coding region of FS2 result in amino acid variation and premature translation termination in the fs2 mutant, respectively.  FS2 was found to be highly expressed in the apical buds and young ovaries.  In addition, experiments suggest that FS2 participates in the regulation of fruit spine initiation by activating the expression of the Tril gene in cucumber.  This work provides not only an important reference for understanding the molecular mechanisms of fruit spine development but also an important resource for fruit appearance quality breeding in cucumber.



Keywords:  cucumber       few spines        FS2        trichome        ARID-HMG transcription factor  
Received: 07 December 2023   Accepted: 27 February 2024
Fund: 
This study was supported by the National Natural Science Foundation of China (31972425) and the Shanghai Agriculture Applied Technology Development Program, China (2020-02-08-00-08-F0148).
About author:  Hui Du, E-mail: duhui01@caas.cn; Yue Chen, E-mail: yuechen210@163.com; #Correspondence Junsong Pan, E-mail: jspan71@sjtu.edu.cn; Gang Wang, E-mail: wg770801@sjtu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Hui Du, Yue Chen, Liangrong Xiong, Juan Liu, Keyan Zhang, Ming Pan, Haifan Wen, Huanle He, Run Cai, Junsong Pan, Gang Wang. 2025. FS2 encodes an ARID-HMG transcription factor that regulates fruit spine density in cucumber. Journal of Integrative Agriculture, 24(3): 1080-1091.

Bo K L, Miao H, Wang M, Xie X X, Song Z C, Xie Q, Shi L X, Wang W P, Wei S, Zhang S P, Gu X F. 2019. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics132, 27–40.

Che G, Zhang X L. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology47, 38–46.

Chen C, Cui Q Z, Huang S W, Wang S H, Liu X H, Lu X Y, Chen H M, Tian Y. 2018. An EMS mutant library for cucumber. Journal of Integrative Agriculture17, 1612–1619.

Chen C H, Yin S, Liu X W, Liu B, Yang S, Xue S D, Cai Y L, Black K, Liu H L, Dong M M, Zhang Y Q, Zhao B Y, Ren H Z. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein Mict. Plant Physiology171, 1156–1168.

Chen Y, Wen H, Pan J, Du H, Zhang K, Zhang L, Yu Y, He H, Cai R, Pan J, Wang G. 2021. CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics134, 2141–2150.

Coulondre C, Miller J H. 1977. Genetic studies of the lac repressor: IV. Mutagenic specificity in the lacI gene of Escherichia coliJournal of Molecular Biology117, 577–606.

Cui J Y, Miao H, Ding L H, Wehner T C, Liu P N, Wang Y, Zhang S P, Gu X F. 2016. A new glabrous gene (csgl3) identified in trichome development in cucumber (Cucumis sativus L.). PLoS ONE11, e148422.

Du H, Wang G, Pan J, Chen Y, Xiao T T, Zhang L Y, Zhang K Y, Wen H F, Xiong L R, Yu Y, He H L, Pan J S, Cai R. 2020. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. Journal of Experimental Botany71, 6297–6310.

Gebretsadik K, Qiu X Y, Dong S Y, Miao H, Bo K L. 2021. Molecular research progress and improvement approach of fruit quality traits in cucumber. Theoretical and Applied Genetics134, 3535–3552.

Griess E A, Rensing S A, Grasser K D, Maier U G, Feix G. 1993. Phylogenetic relationships of HMG box DNA-binding domains. Journal of Molecular Evolution37, 204–210.

Grumet R, Lin Y, Rett-Cadman S, Malik A. 2023. Morphological and genetic diversity of cucumber (Cucumis sativus L.) fruit development. Plants-Basel12, https://doi.org/10.3390/plants12010023.

Hansen F T, Madsen C K, Nordland A M, Grasser M, Merkle T, Grasser K D. 2008. A novel family of plant DNA-binding proteins containing both HMG-box and AT-rich interaction domains. Biochemistry47, 13207–13214.

Kortschak R D, Tucker P W, Saint R. 2000. ARID proteins come in from the desert. Trends in Biochemical Sciences25, 294–299.

Li Q, Cao C X, Zhang C J, Zheng S S, Wang Z H, Wang L N, Ren Z H. 2015. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. Journal of Experimental Botany66, 2515–2526.

Liu M Y, Zhang C J, Duan L X, Luan Q Q, Li J L, Yang A G, Qi X Q, Ren Z H. 2019. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. Journal of Experimental Botany70, 69–84.

Liu X P, Yang X Y, Xie Q, Miao H, Bo K L, Dong S Y, Xin T X, Gu X F, Sun J Q, Zhang S P. 2022. NS encodes an auxin transporter that regulates the ‘numerous spines’ trait in cucumber (Cucumis sativus) fruit. The Plant Journal110, 325–336.

Liu X W, Wang T, Bartholomew E, Black K, Dong M M, Zhang Y Q, Yang S, Cai Y L, Xue S D, Weng Y Q, Ren H Z. 2018. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research5, 31.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America88, 9828–9832.

Okagaki R J, Neuffer M G, Wessler S R. 1991. A deletion common to two independently derived waxy mutations of maize. Genetics128, 425–431.

Pan J, Song J, Sharif R, Xu X, Li S, Chen X. 2024. A mutation in the promoter of the yellow stripe-like transporter gene in cucumber results in a yellow cotyledon phenotype. Journal of Integrative Agriculture23, 849–862.

Pan J, Wang G, Wen H F, Du H, Lian H L, He H L, Pan J S, Cai R. 2018. Differential gene expression caused by the F and M loci provides insight into ethylene-mediated female flower differentiation in cucumber. Frontiers in Plant Science9, 1091.

Pan Y P, Bo K L, Cheng Z H, Weng Y Q. 2015. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1BMC Plant Biology15, 302.

Pedersen D S, Merkle T, Marktl B, Lildballe D L, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser K D. 2010. Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins. Plant Physiology154, 1831–1841.

Postnikov Y V, Bustin M. 2016. Functional interplay between histone H1 and HMG proteins in chromatin. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms1859, 462–467.

Schöb H, Kunz C, Meins Jr F. 1997. Silencing of transgenes introduced into leaves by agroinfiltration: A simple, rapid method for investigating sequence requirements for gene silencing. Molecular and General Genetics256, 581–585.

Stros M, Launholt D, Grasser K D. 2007. The HMG-box: A versatile protein domain occurring in a wide variety of DNA-binding proteins. Cellular and Molecular Life Sciences64, 2590–2606.

Wang Y H, Bo K L, Gu X F, Pan J S, Li Y H, Chen J F, Wen C L, Ren Z H, Ren H Z, Chen X H, Grumet R, Weng Y Q. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research7, 3.

Wang Y L, Nie J T, Chen H M, Guo C L, Pan J, He H L, Pan J S, Cai R. 2016. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativusTheoretical and Applied Genetics129, 305–316.

Wang Z Y, Wang L M, Han L J, Cheng Z H, Liu X F, Wang S Y, Liu L, Chen J C, Song W Y, Zhao J Y, Zhou Z Y, Zhang X L. 2021. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. Plant Physiology187, 1619–1635.

Wilsker D, Patsialou A, Dallas P B, Moran E. 2002. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth & Differentiation13, 95–106.

Wilsker D, Probst L, Wain H M, Maltais L, Tucker P W, Moran E. 2005. Nomenclature of the ARID family of DNA-binding proteins. Genomics86, 242–251.

Xia C, Wang Y J, Liang Y, Niu Q K, Tan X Y, Chu L C, Chen L Q, Zhang X Q, Ye D. 2014. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thalianaThe Plant Journal79, 741–756.

Xie Q, Liu P N, Shi L X, Miao H, Bo K L, Wang Y, Gu X F, Zhang S P. 2018. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theoretical and Applied Genetics131, 1239–1252.

Yang S, Cai Y L, Liu X W, Dong M M, Zhang Y Q, Chen S Y, Zhang W B, Li Y J, Tang M, Zhai X L, Weng Y Q, Ren H Z. 2018. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany69, 1887–1902.

Yang S, Wang Y L, Zhu H Y, Zhang M J, Wang D K, Xie K X, Fan P F, Dou J L, Liu D M, Liu B, Chen C H, Yan Y, Zhao L J, Yang L M. 2022. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. New Phytologist, 233, 2643–2658.

Yang X Q, Zhang W W, He H L, Nie J T, Bie B B, Zhao J L, Ren G L, Li Y, Zhang D, Pan J S, Cai R. 2014. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal78, 1034–1046.

Zhang H Y, Wang L N, Zheng S S, Liu Z Z, Wu X Q, Gao Z H, Cao C X, Li Q, Ren Z H. 2016. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics129, 1289–1301.

Zhang L Y, Lv D, Pan J, Zhang K Y, Wen H F, Chen Y, Du H, He H L, Cai R, Pan J S, Wang G. 2021. A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC Plant Biology21, 182.

Zhang S P, Liu S L, Miao H, Wang M, Liu P N, Wehner T C, Gu X F. 2016. Molecular mapping and candidate gene analysis for numerous spines on the fruit of cucumber. Journal of Heredity107, 471–477.

Zhang W W, Chen Y, Zhou P, Bao W M, Yang X Q, Xu T B, She W W, Xu L Q, Yu P G, Pan J S. 2018. Identification and fine mapping of molecular markers closely linked to fruit spines size ss gene in cucumber (Cucumis sativus L.). Euphytica214, 213.

Zhang W W, He H L, Guan Y, Du H, Yuan L H, Li Z, Yao D Q, Pan J S, Cai R. 2010. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics120, 645–654.

Zhang Y Q, Shen J J, Bartholomew E S, Dong M M, Chen S Y, Yin S, Zhai X L, Feng Z X, Ren H Z, Liu X W. 2021. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. The Plant Journal106, 753–765.

Zhao J L, Pan J S, Guan Y, Zhang W W, Bie B B, Wang Y L, He H L, Lian H L, Cai R. 2015. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativusJournal of Integrative Plant Biology57, 925–935.

Zhao L J, Zhu H Y, Zhang K G, Wang Y L, Wu L, Chen C H, Liu X W, Yang S, Ren H Z, Yang L M. 2020. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber. Plant Science300, 9.

[1] Jiawei Pan, Jia Song, Rahat Sharif, Xuewen Xu, Shutong Li, Xuehao Chen.

A mutation in the promoter of the yellow stripe-like transporter gene in cucumber results in a yellow cotyledon phenotype [J]. >Journal of Integrative Agriculture, 2024, 23(3): 849-862.

[2] WANG Cui, SUN Jin-jing, YANG Xue-yong, WAN Li, ZHANG Zhong-hua, ZHANG Hui-min. An optimized protocol using Steedman’s wax for high-sensitivity RNA in situ hybridization in shoot apical meristems and flower buds of cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(2): 464-470.
[3] WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing. A novel mutation in ACS11 leads to androecy in cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3312-3320.
[4] SONG Xiao-fei, GE Dan-feng, XIE Yang, LI Xiao-li, SUN Cheng-zhen, CUI Hao-nan, ZHU Xue-yun, LIU Ren-yi, YAN Li-ying. Genome-scale mRNA and miRNA transcriptomic insights into the regulatory mechanism of cucumber corolla opening[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2603-2614.
[5] HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1321-1331.
[6] DUAN Yao-ke, SU Yan HAN Rong, SUN Hao, GONG Hai-jun. Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.[J]. >Journal of Integrative Agriculture, 2022, 21(3): 685-696.
[7] XIN Ming, QIN Zhi-wei, YANG Jing, ZHOU Xiu-yan, WANG Lei. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1515-1524.
[8] Miilion P MADEBO, LUO Si-ming, WANG Li, ZHENG Yong-hua, JIN Peng. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3060-3074.
[9] ZOU Jie, ZHOU Cheng-bo, XU Hong, CHENG Rui-feng, YANG Qi-chang, LI Tao. The effect of artificial solar spectrum on growth of cucumber and lettuce under controlled environment[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2027-2034.
[10] WANG Xiu-juan, KANG Meng-zhen, FAN Xing-rong, YANG Li-li, ZHANG Bao-gui, HUANG San-wen, Philippe DE REFFYE, WANG Fei-yue. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1789-1801.
[11] HUANG Cheng-zhen, XU Lei, Sun Jin-jing, ZHANG Zhong-hua, FU Mei-lan, TENG Hui-ying, YI Ke-ke.
Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.)
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 518-527.
[12] LIU Mei, LIU Li-ming, WU Hui-jie, KANG Bao-shan, GU Qin-sheng. Mapping subgenomic promoter of coat protein gene of Cucumber green mottle mosaic virus[J]. >Journal of Integrative Agriculture, 2020, 19(1): 153-163.
[13] HUANG Bin, WANG Qian, GUO Mei-xia, FANG Wen-sheng, WANG Xiao-ning, WANG Qiu-xia, YAN Dong-dong, OUYANG Can-bin, LI Yuan, CAO Ao-cheng. The synergistic advantage of combining chloropicrin or dazomet with fosthiazate nematicide to control root-knot nematode in cucumber production[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2093-2106.
[14] LI Mei, MA Guang-shu, LIAN Hua, SU Xiao-lin, TIAN Ying, HUANG Wen-kun, MEI Jie, JIANG Xi-liang. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology[J]. >Journal of Integrative Agriculture, 2019, 18(3): 607-617.
[15] CHEN Chen, CUI Qing-zhi, HUANG San-wen, WANG Shen-hao, LIU Xiao-hong, LU Xiang-yang, CHEN Hui-ming, TIAN Yun. An EMS mutant library for cucumber[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1612-1619.
No Suggested Reading articles found!