Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1786-1799    DOI: 10.1016/j.jia.2024.11.025
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
A time-course transcriptome reveals the response of watermelon to low-temperature stress

Jin Wang1, 2*, Minghua Wei1*, Haiyan Wang1, Changjuan Mo1, Yingchun Zhu3#, Qiusheng Kong1#

1 National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

2 Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops/Key Laboratory for Vegetable Biology of Hunan Province/College of Horticulture, Hunan Agricultural University, Changsha 410128, China

3 Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China

 Highlights 
● Time-course transcriptome analysis identified six cold-responsive gene clusters, elucidating metabolic pathway regulation and time-dependent gene expression under cold stress.
ClMYB14 negatively regulates cold tolerance via the unsaturated fatty acid pathway and heat shock transcription factors, offering novel targets for molecular breeding.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

西瓜Citrullus lanatus是一种重要的园艺作物,但其易受低温胁迫的影响,这对西瓜生产和供应提出了重大挑战。尽管西瓜具有重要的经济价值,但对其在转录水平上对低温胁迫的响应知之甚少。在本研究中,我们进行了一个时序转录组分析,系统地研究了西瓜在低温胁迫下的调控网络。共鉴定出6个低温响应基因簇,代表6种表达模式,揭示了低温胁迫下西瓜代谢途径的多样性调控。对时间特异性差异表达基因的分析揭示了西瓜对低温响应的时间依赖性。此外,ClMYB14-OE过表达株系更易受到低温胁迫的影响,因此ClMYB14被发现是低温耐受性的负调控因子。共表达网络分析表明,ClMYB14通过调控不饱和脂肪酸途径和热激转录因子参与低温响应。本研究为了解西瓜响应低温胁迫的调控网络提供了重要信息,并为提高西瓜耐低温性的遗传改良提供了候选基因。



Abstract  

Watermelon (Citrullus lanatus) is an economically important horticultural crop.  However, it is susceptible to low-temperature stress, which significantly challenges its production and supply.  Despite the great economic importance of watermelon, little is known about its response to low-temperature stress at the transcriptional level.  In this study, we performed a time-course transcriptome analysis to systematically investigate the regulatory network of watermelon under low-temperature stress.  Six low-temperature-responsive gene clusters representing six expression patterns were identified, revealing diverse regulation of metabolic pathways in watermelon under low-temperature stress.  Analysis of temporally specific differentially expressed genes revealed the time-dependent nature of the watermelon response to low temperature.  Moreover, ClMYB14 was found to be a negative regulator of low-temperature tolerance as ClMYB14-OE lines were more susceptible to low-temperature stress.  Co-expression network analysis demonstrated that ClMYB14 participates in the low-temperature response by regulating the unsaturated fatty acid pathway and heat shock transcription factor.  This study provides substantial information for understanding the regulatory network of watermelon in response to low-temperature stress, and identifies candidate genes for the genetic improvement of watermelon with higher low-temperature tolerance.

Keywords:  watermelon       time-course transcriptome        low temperature        ClMYB14        co-expression  
Received: 25 December 2023   Online: 12 November 2024   Accepted: 17 June 2024
Fund: 

This work was financed by the National Natural Science Foundation of China (31471894), the China Agriculture Research System of MOF and MARA (CARS-25), the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-ZFRI).

About author:  Jin Wang, E-mail: jinwang214@163.com; Minghua Wei, E-mail: 2020305110101@webmail.hzau.edu.cn; #Correspondence Yingchun Zhu, E-mail: zhuyingchun@caas.cn; Qiusheng Kong, E-mail: qskong@mail.hzau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. 2025. A time-course transcriptome reveals the response of watermelon to low-temperature stress. Journal of Integrative Agriculture, 24(5): 1786-1799.

Agarwal M, Hao Y J, Kapoor A, Dong C H, Fujii H, Zheng X W, Zhu J K. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry281, 37636–37645.

An J P, Wang X F, Zhang X W, Xu H F, Bi S Q, You C X, Hao Y J. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnology Journal18, 337–353.

Chen S F, Zhou Y Q, Chen Y R, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, 884–890.

Cheng F, Lu J Y, Gao M, Shi K, Kong Q S, Huang Y, Bie Z L. 2016. Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Frontiers in Plant Science7, 1519.

Ding Y L, Shi Y T, Yang S H. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant13, 544–564.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in ArabidopsisTrends in Plant Science15, 573–581.

Foerster J, Kuerth A, Niederstrasser E, Krautwald E, Pauli R, Paulat R, Eweleit M, Riemekasten G, Worm M. 2007. A cold-response index for the assessment of Raynaud’s phenomenon. Journal of Dermatological Science45, 113–120.

Guo S G, Zhao S J, Sun H H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X Q, Zhang H Y, Shang J L, Gong G Y, Wen C L, He N, Tian S W, Li M Y, Liu J P, Wang Y P, Zhu Y C, Jarrets R, Levi A, Zhang X P, Huang S W, Fei Z J, Liu W G, Xu Y. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics51, 1616–1623.

Hou Q C, Ufer G D, Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant Cell and Environment39, 1029–1048.

Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research45, D1040–D1045.

Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science7, 193–195.

Kong Q S, Yuan J X, Gao L Y, Zhao S, Jiang W, Huang Y, Bie Z L. 2014. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE9, e90612.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Liu X Y, Teng Y B, Li B, Meng Q W. 2013. Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing through regulation of trienoic fatty acids. Photosynthetica51, 238–244.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Meissner M, Orsini E, Ruschhaupt M, Melchinger A E, Hincha D K, Heyer A G. 2013. Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Plant Cell and Environment36, 1256–1267.

Meng C, Sui N. 2019. Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiology and Biochemistry135, 167–173.

Meng X, Yin B, Feng H L, Zhang S, Liang X Q, Meng Q W. 2014. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biologia Plantarum58, 121–130.

Nueda M J, Tarazona S, Conesa A. 2014. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics30, 2598–2602.

Park S, Lee C M, Doherty C J, Gilmour S J, Kim Y, Thomashow M F. 2015. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant Journal82, 193–207.

Patro R, Duggal G, Love M I, Irizarry R A, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods14, 417–419.

Raza A, Razzaq A, Mehmood S S, Zou X L, Zhang X K, Lv Y, Xu J S. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants-Basel8, 34.

Sanchez J, Mangat P K, Angeles-Shim R B. 2019. Weathering the cold: Modifying membrane and storage fatty acid composition of seeds to improve cold germination ability in upland cotton (Gossypium hirsutum L.). Agronomy-Basel9, 684.

Shi X F, Wang X B, Cheng F, Cao H S, Liang H, Lu J Y, Kong Q S, Bie Z L. 2019. iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. Journal of Proteomics192, 311–320.

Shi Y, Ding Y, Yang S. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science23, 623–637.

Spalholz H, Kubota C. 2017. Rootstock affected in- and poststorage performance of grafted watermelon seedlings at low temperature. Horttechnology27, 93–98.

Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. 2010. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiology153, 145–158.

Takahashi D, Johnson K L, Hao P, Tuong T, Erban A, Sampathkumar A, Bacic A, Livingston D P, Kopka J, Kuroha T, Yokoyama R, Nishitani K, Zuther E, Hincha D K. 2020. Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and subzero acclimation. Plant, Cell & Environment44, 915–930.

Wang J, Liu Y, Chen X L, Kong Q S. 2020. Characterization and divergence analysis of duplicated R2R3-MYB genes in watermelon. Journal of the American Society for Horticultural Science145, 281–288.

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2, 100141.

Xie Y P, Chen P X, Yan Y, Bao C N, Li X W, Wang L P, Shen X X, Li H Y, Liu X F, Niu C D, Zhu C, Fang N, Shao Y, Zhao T, Yu J T, Zhu J H, Xu L F, van Nocker S, Ma F W, Guan Q M. 2018. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist218, 201–218.

Xu J D, Zhou S S, Gong X Q, Song Y, van Nocker S, Ma F W, Guan Q M. 2018. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnology Journal16, 672–687.

Xu J H, Zhang M, Liu G, Yang X P, Hou X L. 2016. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. Plant Physiology and Biochemistry109, 561–570.

Zhang B, Hu Z L, Zhang Y J, Li Y L, Zhou S, Chen G P. 2012. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Reports31, 281–289.

Zhang G Y, Ding Q, Wei B Q. 2021. Genome-wide identification of superoxide dismutase gene families and their expression patterns under low-temperature, salt and osmotic stresses in watermelon and melon. 3 Biotech11, 194.

Zhang L Y, Jiang X C, Liu Q Y, Ahammed G J, Lin R, Wang L Y, Shao S J, Yu J Q, Zhou Y H. 2020. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant Cell and Environment43, 2712–2726.

[1] Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 147-160.
[2] Shuang Pei, Zexu Wu, Ziqiao Ji, Zheng Liu, Zicheng Zhu, Feishi Luan, Shi Liu. Quantitative trait loci identification reveals zinc finger protein CONSTANS-LIKE 4 as the key candidate gene of stigma color in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2292-2305.
[3] Hu Wang, Lihong Cao, Yalu Guo, Zheng Li, Huanhuan Niu. Enhancer of Shoot Regeneration 2 (ESR2) regulates pollen maturation and vitality in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3506-3521.
[4] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[5] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[6] ZHU Ying-chun, SUN De-xi, DENG Yun, AN Guo-lin, LI Wei-hua, SI Wen-jing, LIU Jun-pu, SUN Xiao-wu.
Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon (Citrullus lanatus)
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 528-540.
[7] DOU Jun-ling, YUAN Ping-li, ZHAO Sheng-jie, HE Nan, ZHU Hong-ju, GAO Lei, JI Wan-li, LU Xuqiang, LIU Wen-ge. Effect of ploidy level on expression of lycopene biosynthesis genes and accumulation of phytohormones during watermelon (Citrullus lanatus) fruit development and ripening[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1956-1967.
[8] HU Li-ping, ZHANG Feng, SONG Shu-hui, TANG Xiao-wei, XU Hui, LIU Guang-min, WANG Ya-qin, HE Hong-ju . Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1486-1501.
[9] Sel?uk ?zmen, R?za Kanber, Nebahat Sar?, Mustafa ünlü. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon[J]. >Journal of Integrative Agriculture, 2015, 14(5): 966-976.
No Suggested Reading articles found!