Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 2002-2014    DOI: 10.1016/j.jia.2024.11.007
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Degradation of oxytetracycline in soil by a Pseudomonas strain
Xueqi Guo1, Weining Qi1, 2, Yao Feng1, Zhaojun Li1#

1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2 Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土霉素(OTC)在畜牧业中被广泛使用并以不同形式进入土壤,对环境造成严重危害。前人研究表明,假单胞菌属可能具有降解土壤中抗生素的能力;同时,抗生素的初始浓度、降解温度等对抗生素降解菌的降解效率有显著影响但是关于环境因素对假单胞菌降解效率的影响鲜有报道。本实验中,我们研究了不同OTC初始浓度、降解温度和土壤灭菌处理对假单胞菌T4降解效率的影响,还重点研究了加入T4菌后OTC的微生物降解途径、降解过程中抗性基因(ARGs)以及微生物群落的变化。结果表明,在未灭菌的土壤中,OTC初始浓度为2.5 mg kg-1、降解温度为30℃时,T4菌对OTC的降解效果最好,63天后OTC的降解率达到69.53%。加入T4菌后OTC的降解途径包括脱水、去甲基化、脱胺化、羟基化、氧化和环裂解。拟杆菌门、变形菌门和酸杆菌门对土壤中OTC的生物降解起关键作用同时发现tet(G)在13种常见四环素ARGs中检出频率最高。研究中观察到的微生物群落变化可为土壤中OTC的生物降解提供新的思路



Abstract  

Oxytetracycline (OTC) is used extensively in animal husbandry and enters the soil in different forms, causing severe environmental pollution.  Previous studies have shown that the genus Pseudomonas can potentially degrade antibiotics in the soil environment.  Environmental conditions, such as the initial concentration of antibiotics, incubation temperature and others, have significant impacts on the activity of antibiotic-degrading bacteria.  However, few reports have clarified the environmental impacts on the effectiveness of Pseudomonas spp.  In the present study, we investigated the effects of different initial concentrations of OTC and incubation temperatures, as well as soil sterilization, on OTC degradation by Pseudomonas strain T4.  We also focused on the microbial degradation pathways of OTC, and variations in both antibiotic resistance genes (ARGs) and microbial communities with T4 functioning under optimal conditions.  The results showed that the most effective degradation occurred under an initial OTC concentration of 2.5 mg kg–1 at 30°C in unsterilized soil spiked with T4.  These conditions yielded an OTC degradation rate of 69.53% within 63 days.  The putative degradation pathways of OTC in the presence of T4 included dehydration, demethylation, deamination, hydroxylation, oxidation and ring opening.  Bacteroidetes, Proteobacteria and Acidobacteria played key roles in the biodegradation of OTC with T4 in the soil.  The results also showed that tet(G) was the most frequently detected ARGs among the 13 common tetracycline ARGs that were investigated.  The bacterial community shift observed in this study may provide new insights into the microbial degradation of OTC in soil.


Keywords:  oxytetracycline       ARGs       Pseudomonas       biodegradation       soil  
Received: 09 May 2024   Online: 04 November 2024   Accepted: 08 October 2024
Fund: 

This study was funded by the earmarked fund for China Agriculture Research System (CARS-29-zp-10).

About author:  Xueqi Guo, Mobile: +86-15122142736, E-mail: 82101211162@caas.cn; #Correspondence Zhaojun Li, E-mail: lizhaojun@caas.cn

Cite this article: 

Xueqi Guo, Weining Qi, Yao Feng, Zhaojun Li. 2025. Degradation of oxytetracycline in soil by a Pseudomonas strain. Journal of Integrative Agriculture, 24(5): 2002-2014.

Cadena M, Durso L M, Miller D N, Waldrip H M, Castleberry B L, Drijber R A, Wortmann C. 2018. Tetracycline and sulfonamide antibiotic resistance genes in soils from nebraska organic farming operations. Frontiers in Microbiology9, 1–10.

Cai M M, Ma S T, Hu R Q, Tomberlin J K, Yu C, Huang Y P, Zhan S, Li W, Zheng L Y, Yu Z N, Zhang J B. 2018. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environmental Pollution242, 634–642.

Cao J, Ji D G, Wang C. 2015. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biology and Biochemistry90, 283–292.

Cao L J, Zhang J Y, Zhao R X, Deng Y, Liu J, Fu W, Lei Y, Zhang T, Li X, Li B. 2019. Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. Environment International131, 104961.

Cao X, Zhao W, Zhang H, Lin J, Hu J, Lou Y, Wang H, Yang Q, Pan H, Zhuge Y. 2022. Individual and combined contamination of oxytetracycline and cadmium inhibited nitrification by inhibiting ammonia oxidizers. Frontiers in Microbiology13, 1–15.

Chen G X, He W W, Wang Y, Zou Y D, Liang J B, Liao X D, Wu Y B. 2014. Effect of different oxytetracycline addition methods on its degradation behavior in soil. Science of the Total Environment479–480, 241–246.

Chen J F, Ke Y C, Zhu Y, Chen X L, Xie S G. 2023. Deciphering of sulfonamide biodegradation mechanism in wetland sediments: From microbial community and individual populations to pathway and functional genes. Water Research240, 120132.

Chen Y S, Wang Z J, Shen Z J, Ou Z L, Xu D C, Yuan Z X, Zhou S B. 2017. Effects of oxytetracycline on growth and chlorophyll fluorescence in rape (Brassica campestris L.). Polish Journal of Environmental Studies26, 995–1001.

Cheng Q P, Cheung Y C, Liu C Y, Xiao Q J, Sun B, Zhou J H, Chan E W C, Zhang R, Chen S. 2021. Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline. BMC Biology19, 262.

Chessa L, Pusino A, Garau G, Mangia N P, Pinna M V. 2016. Soil microbial response to tetracycline in two different soils amended with cow manure. Environmental Science and Pollution Research23, 5807–5817.

Chopra I, Roberts M. 2001. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews65, 232–260

Cunningham C J, Kuyukina M S, Ivshina I B, Konev A I, Peshkur T A, Knapp C W. 2020. Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environmental Science (Processes and Impacts), 22, 1110–1124.

Cycoń M, Żmijowska A, Piotrowska-Seget Z. 2014. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescensInternational Journal of Environmental Science and Technology11, 1305–1316.

Elder F C T, Pascoe B, Wells S, Sheppard S K, Snape J, Gaze W H, Feil E J, Kasprzyk-Hordern B. 2022. Stereoselective metabolism of chloramphenicol by bacteria isolated from wastewater, and the importance of stereochemistry in environmental risk assessments for antibiotics. Water Research217, 118415.

Fang H, Han L X, Cui Y L, Xue Y F, Cai L, Yu Y L. 2016. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments. Science of the Total Environment572, 1203–1212.

Fiaz A, Zhu D C, Sun J Z. 2021. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe33, 64.

Gasparrini A J, Markley J L, Kumar H, Wang B, Fang L T, Irum S, Symister C T, Wallace M, Burnham C A D, Andleeb S, Tolia N H, Wencewicz T A, Dantas G. 2020. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Communications Biology3, 241.

Guo X H, Xie C Y, Wang L J, Li Q F, Wang Y. 2019. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environmental Science and Pollution Research26, 8429–8443.

Halling-Sørensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjørnelund J. 2003. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere50, 1331–1342.

Hansen M L, Wibowo M, Jarmusch S A, Larsen T O, Jelsbak L. 2022. Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. The ISME Journal16, 2680–2690.

Hasan T, Allen M, Cooperman B S. 1985. Anhydrotetracycline is a major product of tetracycline photolysis. Journal of Organic Chemistry50, 1755–1757.

Hong X X, Zhao Y C, Zhuang R D, Liu J Y, Guo G T, Chen J M, Yao Y M. 2020. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Advances10, 33086–33102.

Kim S H, Kim G E, Jho E H. 2023. Effect of soil pH and temperature on the biodegradation of an agricultural antibiotic oxolinic acid. Korean Journal of Environmental Agriculture42, 8–13.

Koch N, Islam N F, Sonowal S, Prasad R, Sarma H. 2021. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Current Research in Microbial Sciences2, 100027.

Kong W D, Zhu Y G, Fu B J, Marschner P, He J Z. 2006. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution143, 129–137.

Kumar K, Gupta C S, Chander Y, Singh A K. 2005. Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in Agronomy87, 1–54.

Le V V, Tran Q G, Ko S R, Lee S A, Oh H M, Kim H S, Ahn C Y. 2023. How do freshwater microalgae and cyanobacteria respond to antibiotics? Critical Reviews in Biotechnology43, 191–211.

Li Y, Yu X, Bian B B, Peng S S, Zhang G. 2020. The level of oxytetracycline uptake in the presence of copper ions and the physiological response of Brassica chinensis L. Polish Journal of Environmental Studies29, 1229–1236.

Li Y X, Yang T, Lin X J, Huang J F, Zeng J W, Cai Q Y, Zhang Y L, Rong J N, Yu W D, Qiu J R, Pang Y W, Zhou J L. 2024. Isolation, identification, and optimization of conditions for the degradation of four sulfonamide antibiotics and their metabolic pathways in Pseudomonas stutzeri strain DLY–21. Heliyon10, e29123.

Lin B K, Lyu J L, Lyu X, Yu H, Hu Z, Lam J C W, Lam P K S. 2015. Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. Journal of Hazardous Materials282, 158–164.

Lin Z Q, Zhang W P, Pang S M, Huang Y H, Mishra S, Bhatt P, Chen S H. 2020. Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. Molecules25, 1–16.

Liu Y Q, He X X, Duan X D, Fu Y S, Fatta-Kassinos D, Dionysiou D D. 2016a. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. Water Research95, 195–204.

Liu Y Q, He X X, Fu Y S, Dionysiou D D. 2016b. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chemical Engineering Journal284, 1317–1327.

Liu Y W, Chang H Q, Li Z J, Zhang C, Feng Y, Cheng D M. 2016. Gentamicin removal in submerged fermentation using the novel fungal strain Aspergillus terreus FZC3. Scientific Reports6, 3–12.

Ma T T, Pan X, Chen L K, Liu W X, Christie P, Luo Y M, Wu L H. 2016. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology76, 53–60.

Macauley J J, Adams C D, Mormile M R. 2007. Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a swine lagoon with low antibiotic impact. Canadian Journal of Microbiology53, 1307–1315.

Marti R, Scott A, Tien Y C, Murray R, Sabourin L, Zhang Y, Topp E. 2013. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology79, 5701–5709.

Martinez J L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution157, 2893–2902.

Meng Y H, Feng Y, Li X F, Liu Y W, Li Z J. 2018. Isolation of an oxytetracycline-degrading bacterial strain and its biodegradation characteristics. Journal of Plant Nutrition and Fertilizers24, 720–727. (in Chinese)

Millet S, Maertens L. 2011. The European ban on antibiotic growth promoters in animal feed: From challenges to opportunities. Veterinary Journal187, 143–144.

Nas B, Argun M E, Dolu T, Ateş H, Yel E, Koyuncu S, Dinç S, Kara M. 2020. Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland. Journal of Environmental Management268, 110580.

Pan M, Chu L M. 2017. Leaching behavior of veterinary antibiotics in animal manure-applied soils. Science of the Total Environment579, 466–473.

Peng S, Wang Y M, Zhou B B, Lin X G. 2015. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Science of the Total Environment506–507, 279–286.

Piotrowska M, Rzeczycka M, Ostrowski R, Popowska M A. 2017. Diversity of antibiotic resistance among bacteria isolated from sediments and water of carp farms located in a Polish nature reserve. Polish Journal of Environmental Studies26, 239–252.

Qi M Y, Liang B, Zhang L, Ma X D, Yan L, Dong W C, Kong D Y, Zhang L Y, Zhu H Z, Gao S H, Jiang J D, Liu S J, Corvini P F X, Wang A J. 2021. Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes. Environmental Science & Technology55, 3270–3282.

Qi W N, Long J, Feng C Q, Feng Y, Cheng D M, Liu Y W, Xue J M, Li Z J. 2019. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonasWater Research160, 361–370.

Rico A, Zhao W K, Gillissen F, Lürling M, Van den Brink P J. 2018. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin. Ecotoxicology and Environmental Safety148, 228–236.

Saha N, McGaughy K, Held M A, Reza M T. 2020. Hydrothermal degradation of β-estradiol and oxytetracycline at selective reaction severities. SN Applied Sciences2, 1–9.

Sanow S, Kuang W Q, Schaaf G, Huesgen P, Schurr U, Roessner U, Watt M, Arsova B. 2023. Molecular mechanisms of Pseudomonas-assisted plant nitrogen uptake: Opportunities for modern agriculture. Molecular Plant-Microbe Interactions36, 536–548.

Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo M J, Álvarez-Rodríguez E, Núñez-Delgado A, Fernández-Calviño D. 2020a. Effect of oxytetracycline and chlortetracycline on bacterial community growth in agricultural soils. Agronomy10, 1–14.

Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo M J, Álvarez-Rodríguez E, Núñez-Delgado A, Fernández-Calviño D. 2020b. Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agricultural soil. Applied Soil Ecology147, 103437.

Shao S C, Hu Y Y, Cheng C, Cheng J H, Chen Y C. 2018. Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5. Chemosphere209, 35–43.

Shao S C, Hu Y Y, Cheng J H, Chen Y C. 2019. Action of oxytetracycline (OTC) degrading bacterium and its application in Moving Bed Biofilm Reactor (MBBR) for aquaculture wastewater pre-treatment. Ecotoxicology and Environmental Safety171, 833–842.

Shentu J L, Zhang K, Shen D S, Wang M Z, Feng H J. 2015. Effect from low-level exposure of oxytetracycline on abundance of tetracycline resistance genes in arable soils. Environmental Science and Pollution Research22, 13102–13110.

Shi Y K, Lin H, Ma J W, Zhu R R, Sun W C, Lin X Y, Zhang J, Zheng H B, Zhang X. 2021. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. Journal of Hazardous Materials403, 123996.

Sun L, Zhang G H, Luan L L, Liu F. 2016. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena145, 239–245.

Tan H, Kong D L, Ma Q Y, Li Q Q, Zhou Y Q, Jiang X, Wang Z Y, Parales R E, Ruan Z Y. 2022. Biodegradation of tetracycline antibiotics by the yeast strain Cutaneotrichosporon dermatis M503. Microorganism10, 565.

Tan Z W, Chen J C, Liu Y L, Chen L, Xu Y Q, Zou Y X, Li Y T, Gong B N. 2021. The survival and removal mechanism of Sphingobacterium changzhouense TC931 under tetracycline stress and its’ ecological safety after application. Bioresource Technology333, 125067.

Thiele-Bruhn S. 2003. Pharmaceutical antibiotic compounds in soils - A review. Journal of Plant Nutrition and Soil Science166, 145–167.

Tian J C, Chen C, Lartey-Young G, Ma L M. 2023. Biodegradation of cefalexin by two bacteria strains from sewage sludge. Royal Society Open Science10, 220442.

Visca A, Barra Caracciolo A, Grenni P, Patrolecco L, Rauseo J, Massini G, Mazzurco Miritana V, Spataro F. 2021. Anaerobic digestion and removal of sulfamethoxazole, enrofloxacin, ciprofloxacin and their antibiotic resistance genes in a full-scale biogas plant. Antibiotics10, 502.

Wang J, Shen X L, Wang J, Yang Y P, Yuan Q P, Yan Y J. 2018. Exploring the promiscuity of phenol hydroxylase from Pseudomonas stutzeri OX1 for the biosynthesis of phenolic compounds. ACS Synthetic Biology7, 1238–1243.

Wang J W, Long Y N, Yu G L, Wang G L, Zhou Z Y, Li P Y, Zhang Y M, Yang K, Wang S T. 2022. A review on microorganisms in constructed wetlands for typical pollutant removal: Species, function, and diversity. Frontiers in Microbiology13, 845725.

Wang X C, Chen Z L, Kang J, Zhao X, Shen J M. 2018. Removal of tetracycline by aerobic granular sludge and its bacterial community dynamics in SBR. RSC Advances8, 18284–18293.

Wei Z S, Chen X L, Huang Z S, Jiao H Y, Xiao X L. 2022. Insights into the removal of gaseous oxytetracycline by combined ozone and membrane biofilm reactor. Environmental Engineering Research27, 210460–210469.

Wu N, Qiao M, Zhang B, Cheng W D, Zhu Y G. 2010. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environmental Science & Technology44, 6933–6939.

Wu X L, Gu Y C, Wu X Y, Zhou X Y, Zhou H, Amanze C, Shen L, Zeng W M. 2020. Construction of a tetracycline degrading bacterial consortium and its application evaluation in laboratory-scale soil remediation. Microorganisms8, 292.

Yang C W, Liu C E, Chang B V. 2020. Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water12, 2147.

Yang Q L, Gao Y, Ke J, Show P L, Ge Y H, Liu Y H, Guo R X, Chen J Q. 2021. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered12, 7376–7416.

Yang Q X, Zhang J, Zhu K F, Zhang H. 2009. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. Journal of Environmental Sciences21, 954–959.

Yang W R, Moore I F, Koteva K P, Bareich D C, Hughes D W, Wright G D. 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. Journal of Biological Chemistry279, 52346–52352.

Yuan F, Hu C, Hu X X, Wei D B, Chen Y, Qu J H. 2011. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials185, 1256–1263.

Zhang C F, Yang Z G, Jin W, Wang X, Zhang Y K, Zhu S J, Yu X, Hu G, Hong Q. 2017. Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology64, 289–296.

Zhang H B, Zhou Y, Huang Y J, Wu L H, Liu X H, Luo Y M. 2016. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere152, 229–237.

Zhang J X, Zhang Y B, Quan X. 2015. Bio-electrochemical enhancement of anaerobic reduction of nitrobenzene and its effects on microbial community. Biochemical Engineering Journal94, 85–91.

Zhang Z J, Shen J G, Wang H, Liu M, Wu L H, Ping F, He Q, Li H Y, Zheng C F, Xu X H. 2014. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica). Scientific Reports4, 6844.

Zhang Z K, He H H, Han T, Tian X M, Pang J Y, Lambers H. 2023. Soil oxytetracycline alters the effects of phosphate fertilisation and Bacillus amyloliquefaciens on the bacterial community of Medicago sativa rhizosphere. Applied Soil Ecology187, 104861.

Zheng J Y, Zhang J X, Gao L, Kong F Y, Shen G M, Wang R, Gao J M, Zhang J G. 2020. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot experiment. Scientific Reports10, 1–10.

Zhong C Q, Zhou Y P, Fu J F, Qi X Y, Wang Z, Li J Q, Zhang P P, Zong G L, Cao G X. 2022. Cadmium stress efficiently enhanced meropenem degradation by the meropenem- and cadmium-resistant strain Pseudomonas putida R51. Journal of Hazardous Materials429, 128354.

Zhou S Y D, Zhu D, Giles M, Daniell T, Neilson R, Yang X R. 2020. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environment International136, 105359.

Zhu Y G, Johnson T A, Su J Q, Qiao M, Guo G X, Stedtfeld R D, Hashsham S A, Tiedje J M. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America110, 3435–3440.

Zhu Y G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok Y S, Capon A, Banwart S. 2019. Soil biota, antimicrobial resistance and planetary health. Environment International131, 105059.

Zou S B, Zhang Q Q, Zhang X L, Dupuy C, Gong J. 2020. Environmental factors and pollution stresses select bacterial populations in association with protists. Frontiers in Marine Science7, 659.

[1] Zhechao Dou, Jing Ma, Kunguang Wang, Qiaofang Lu, Zhiguang Chi, Dongming Cui, Chang Pan, Zhuchi He, Yuanmei Zuo. Use of soil nematodes as indicators of soil and plant health in continuous cropping systems: A case study in dragon fruit[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1987-2001.
[2] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[3] Ying Zhao, Xiaozeng Han, Chen Qiu, Wenxiu Zou, Xinchun Lu, Jun Yan, Xu Chen. The enhancements of pore morphology and size distribution by straw return are mediated by increases in aggregate-associated carbon and nitrogen[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1562-1576.
[4] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[5] Bing Han, Yicheng He, Jun Zhou, Yufei Wang, Lina Shi, Zhenrong Lin, Lu Yu, Wantong Zhang, Yiyi Geng, Xinqing Shao. Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow[J]. >Journal of Integrative Agriculture, 2025, 24(3): 815-826.
[6] Weixiao Tang, Yi Lv, Rong Zhang, Xin Wang, Haiyan Wang, Mei Wang, Xuesen Chen, Xiang Shen, Chengmiao Yin, Zhiquan Mao. Mixed application of raw amino acid powder and Trichoderma harzianum fertilizer for the prevention and management of apple replant disease[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1126-1139.
[7] Bo Pang, Lirong Zhao, Xingxing Ma, Jiangtao Hong, Ziyin Du, Xiaodan Wang. Vegetation patches modify the acquisition of nitrogen by plants and microorganisms in a degraded alpine steppe[J]. >Journal of Integrative Agriculture, 2025, 24(3): 925-935.
[8] Taowen Pan, Yulin Chen, Sicong Li, Lei Wang, Joji Muramoto, Carol Shennan, Jihui Tian, Kunzheng Cai. Anaerobic soil disinfestation rather than Bacillus velezensis Y6 inoculant suppresses tomato bacterial wilt by improving soil quality and manipulating bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 754-768.
[9] Ben Zhao, Anzhen Qin, Wei Feng, Xinqiang Qiu, Pingyan Wang, Haixia Qin, Yang Gao, Guojie Wang, Zhandong Liu, Syed Tahir Ata-Ul-Karim. Water deficit affects the nitrogen nutrition index of winter wheat under controlled water conditions[J]. >Journal of Integrative Agriculture, 2025, 24(2): 724-738.
[10] Jinfeng Wang, Xueyun Yang, Shaomin Huang, Lei Wu, Zejiang Cai, Minggang Xu. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize–wheat cropping systems[J]. >Journal of Integrative Agriculture, 2025, 24(1): 290-305.
[11] Chuandong Tan, Yadan Du, Xiaobo Gu, Wenquan Niu, Jinbo Zhang, Christoph Müller, Xuesong Cao. Aerated irrigation increases tomato production by improving soil nitrogen availability[J]. >Journal of Integrative Agriculture, 2025, 24(1): 322-338.
[12] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[13] Hubing Zhao, Guanfei Liu, Yingxia Dou, Huimin Yang, Tao Wang, Zhaohui Wang, Sukhdev Malhi, Adnan Anwar Khan. Plastic mulch increases dryland wheat yield and water-use productivity, while straw mulch increases soil water storage[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3174-3185.
[14] Peihua Du, Yang Cao, Huaite Liu, Jiahao Ji, Wei Sun, Xueying Zhang, Jizhong Xu, Bowen Liang. Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3025-3044.
[15] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
No Suggested Reading articles found!