Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1987-2001    DOI: 10.1016/j.jia.2024.09.014
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Use of soil nematodes as indicators of soil and plant health in continuous cropping systems: A case study in dragon fruit

Zhechao Dou, Jing Ma, Kunguang Wang, Qiaofang Lu, Zhiguang Chi, Dongming Cui, Chang Pan, Zhuchi He, Yuanmei Zuo#

College of Resources and Environmental Sciences/State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China

 Highlights 
Soil nematode community can be used as an indicator to evaluate the soil and plant health of continuous cropping dragon fruit.
Continuous cropping obstacle occurs when the dragon fruit has been planted for 5 years.
Soil nematode communities directly affect the yield of dragon fruit.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

利用连作方式生产的作物会受到植物寄生线虫的严重危害,植物寄生线虫是连作障碍的重要指标。火龙果作为一种典型且重要的多年生经济作物,极易遭受严重的植物寄生线虫侵染;然而,其是否发生连作障碍尚不清楚。在此,我们研究了非连作Y1、连作3年(Y3)和连作5年(Y5)下火龙果土壤和根系中的植物寄生线虫(象耳豆根结线虫和矮化属线虫)、土壤线虫群落、线虫代谢足迹、土壤综合肥力和产量,以确定火龙果潜在的连作障碍以及影响火龙果产量的因素。试验表明:Y5的土壤和根系中植物寄生线虫数量最多;产量降低,火龙果生产受到严重胁迫。进一步分析土壤线虫的组成、多样性和生态功能指数发现,连作3年后土壤生态环境恶化,Y5最严重。同样,Y5处理的土壤对模式动物-秀丽隐杆线虫的生长繁殖也有明显的抑制作用。Mantel检验分析和随机森林模型表明,土壤速效磷、土壤交换性钙、土壤线虫丰度和多样性与产量显著相关。偏最小二乘路径模型分析表明,土壤肥力和土壤线虫多样性直接影响连作火龙果的产量。综上所述,集约化种植的火龙果连作5年时发生连作障碍,土壤线虫多样性和土壤肥力决定作物产量。



Abstract  

Crops produced using the practice of continuous cropping can become seriously damaged by plant-parasitic nematodes, an important indicator of continuous cropping obstacles.  As a typical and important perennial economic crop, dragon fruit is prone to serious plant-parasitic nematode infestation; however, whether it encounters continuous cropping obstacles remains unclear.  Here, we studied plant-parasitic nematodes (Meloidogyne spp. and Tylenchorhynchus sp.) in the soil and roots, soil nematode communities, metabolic footprint, soil integrated fertility, and the yield of intensively planted dragon fruit under non-continuous cropping (Y1) and 3 years (Y3) and 5 years (Y5) of continuous cropping, to determine potential continuous-cropping obstacles and factors that affect the yield of this fruit.  The largest numbers of plant-parasitic nematodes in the soil and roots were observed in Y5; the associated yield was reduced, and the dragon fruit was severely stressed.  Further analysis of the composition, diversity, and ecological function indices of soil nematodes showed that the soil ecological environment deteriorated after 3 years of continuous cropping, with Y5 having the worst results.  Similarly, the soil at Y5 had a significant inhibitory effect on the growth and reproduction of Caenorhabditis elegans.  Mantel test analysis and a random forest model showed that soil available phosphorus, soil exchange calcium, and soil nematode abundance and diversity were related significantly to yield.  Partial least squares path modeling revealed that soil fertility and soil nematode diversity directly impacts the yield of continuously cropped dragon fruit.  In summary, continuous cropping obstacles occurred in Y5 of intensive dragon fruit cultivation, with soil nematode diversity and soil fertility determining the crop’s yield.


Keywords:  Caenorhabditis elegans       continuous cropping obstacle        dragon fruit        plant-parasitic nematodes        soil integrated fertility        soil nematode community  
Received: 06 May 2024   Online: 24 September 2024   Accepted: 21 August 2024
Fund: This study was supported by the National Key Research and Development Program of China (2023YFD1700203 and 2022YFD1901501), the Tianchi Talent Introduction Program of Xinjiang Autonomous Region, China (2023-“2+5”), and the Tingzhou Talent Introduction Program of Changji Autonomous Region, China (2023).
About author:  Zhechao Dou, Mobile: +86-18811798500, E-mail: 18713571365@163.com; #Correspondence Yuanmei Zuo, Mobile: +86-15611091286, E-mail: zuoym@cau.edu.cn

Cite this article: 

Zhechao Dou, Jing Ma, Kunguang Wang, Qiaofang Lu, Zhiguang Chi, Dongming Cui, Chang Pan, Zhuchi He, Yuanmei Zuo. 2025. Use of soil nematodes as indicators of soil and plant health in continuous cropping systems: A case study in dragon fruit. Journal of Integrative Agriculture, 24(5): 1987-2001.

Ashworth A J, Owens P R, Allen F L. 2020. Long-term cropping systems management influences soil strength and nutrient cycling. Geoderma361, 114062.

Bao S. 2011. Soil and Agricultural Chemistry Analysis. 3rd ed. Chinese Agriculture Press, Beijing, China. pp. 25–200. (in Chinese)

Barelli L, Waller A S, Behie S W, Bidochka M J. 2020. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLoS ONE15, e0231150.

Biswal D. 2022. Nematodes as ghosts of land use past: Elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Applied Biochemistry and Biotechnology194, 2357–2417.

Bongers T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia83, 14–19.

Bongers T, van der Meulen H, Korthals G. 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology6, 195–199.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

Chen H, Yang L, Zhang F. 2021. Effects of continuous cotton monocropping on soil physicochemical properties and nematode community in Xinjiang, China. Chinese Journal of Applied Ecology32, 4263–4271. (in Chinese)

Chen J, Sabir I A, Qin Y. 2023. From challenges to opportunities: Unveiling the secrets of pitaya through omics studies. Scientia Horticulturae321, 112357.

Chen P, Wang Y, Liu Q, Zhang Y, Li X, Li H, Li W. 2020. Phase changes of continuous cropping obstacles in strawberry (Fragaria×ananassa Duch.) production. Applied Soil Ecology155, 103626.

Chen X, Xi K, Yang Z, Lu J, Zhang Q, Wang B, Wang K, Shi J. 2023. Long-term increases in continuous cotton yield and soil fertility following the application of cotton straw and organic manure. Agronomy13, 2133.

Chen X, Zhang D, Li Y, Li H, Lou J, Li X, Wei M. 2022. Changes in rhizospheric microbiome structure and soil metabolic function in response to continuous cucumber cultivation. FEMS Microbiology Ecology98, fiac129.

Chen Y, Du J, Li Y, Tang H, Yin Z, Yang L, Ding X. 2022. Evolutions and managements of soil microbial community structure drove by continuous cropping. Frontiers in Microbiology13, 839494.

De Souza V H M, Inomoto M M, Silva A M G B, Souto T G. 2022. First report of Meloidogyne incognita infecting white Pitahaya plants. Plant Protection44, e-822.

Ding M, Dai H, He Y, Liang T, Zhai Z, Zhang S, Hu B, Cai H, Dai B, Xu Y, Zhang Y. 2024. Continuous cropping system altered soil microbial communities and nutrient cycles. Frontiers in Microbiology15, 1374550.

Dutra P, da Rocha M, Duarte H, Zhang S. 2024. A standard area diagram set for assessing severity of dragon fruit (Hylocereus spp.) stem canker caused by Neoscytalidium dimidiatumEuropean Journal of Plant Pathology169, 857–865.

Ferris H. 2010. Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.

Ferris H, Bongers T, de Goede R G M. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology18, 13–29.

Ferris H, Sanchez-Moreno S, Brennan E B. 2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology61, 16–25.

Freckman D W. 1988. Bacterivorous nematodes and organic-matter decomposition. AgricultureEcosystems & Environment24, 195–217.

Fu H, Zhang G, Zhang F, Sun Z, Geng G, Li T. 2017. Effects of continuous tomato monoculture on soil microbial properties and enzyme activities in a solar greenhouse. Sustainability9, 317.

van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle D A, de Goede R G M, Adams B J, Ahmad W, Andriuzzi W S, Bardgett R D, Bonkowski M, Campos-Herrera R, Cares J E, Caruso T, de Brito Caixeta L, Chen X, Costa S R, Creamer R, da Cunha M, et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198.

Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren J R. 2008. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegansBMC Molecular Biology9, 9.

How C M, Yen P L, Wei C C, Li S W, Liao V H C. 2019. Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegansEnvironmental Pollution251, 871–878.

Huang C W, Yen P L, Kuo Y H, Chang C H, Liao V H C. 2022. Nanoplastic exposure in soil compromises the energy budget of the soil nematode C. elegans and decreases reproductive fitness. Environmental Pollution312, 120071.

Huang Y, Huang Y, Chen G, Liu Y, Pan L, Xiong L. 2017. Investigation and evaluation of soil nutrients in pitaya orchard in Guangxi. Southwest China Journal of Agricultural Sciences30, 2035–2040. (in Chinese)

Ingham R E, Trofymow J A, Ingham E R, Coleman D C. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs55, 119–140.

International Organization for Standardization (ISO). 2010. Water quality-determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). ISO 10872:2020(E). International Organization for Standardization, Geneva, Switzerland.

Jiang Y, Qian H, Wang X, Chen L, Liu M, Li H, Sun B. 2018. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology and Biochemistry119, 22–31.

Kan W, Wu Q. 1994. A preliminary study on a method for quantitative and comprehensive evaluation of soil fertility. Chinese Journal of Soil Science6, 245–247. (in Chinese)

Kim S W, Moon J, Jeong S W, An Y J. 2018. Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment. Environmental Pollution236, 91–99.

Leroy B L M, Sutter N D, Ferris H, Moens M, Reheul D. 2009. Short-term nematode population dynamics as influenced by the quality of exogenous organic matter. Nematology11, 23–38.

Li G, Li X, Liu T. 2024. Reassessing soil nematode diversity under fertilization in a paddy–upland rotation system. Applied Soil Ecology195, 105216.

Li H, Li C, Song X, Liu Y, Gao Q, Zheng R, Li J, Zhang P, Liu X. 2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports, 12, 2758.

Li J, Li Y, Wei X, Cui Y, Gu X, Li X, Yoshiga T, Abd-Elgawad M M, Shapiro-Ilan D, Ruan W, Rasmann S. 2023. Direct antagonistic effect of entomopathogenic nematodes and their symbiotic bacteria on root-knot nematodes migration toward tomato roots. Plant and Soil484, 441–455.

Li P, Dai C, Wang X, Zhang T, Chen Y. 2012. Variation of soil enzyme activities and microbial community structure in peanut monocropping system in subtropical China. African Journal of Agricultural Research7, 1870–1879.

Li X, Lewis E E, Liu Q, Li H, Bai C, Wang Y. 2016. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Scientific Reports6, 30466.

Li Y, Chi J, Ao J, Gao X, Liu X, Sun Y, Zhu W. 2021. Effects of different continuous cropping years on bacterial community and diversity of cucumber rhizosphere soil in solar-greenhouse. Current Microbiology78, 2380–2390.

Liu H, Pan F, Han X, Song F, Zhang Z, Yan J, Xu Y. 2019. Response of soil fungal community structure to long-term continuous soybean cropping. Frontiers in Microbiology9, 3316.

Liu Z, Dong W, Li X, Wu Y, Wei S, Deng S, Gu Z. 2023. Research progress on the effects of fertilization on farmland nematode community characteristics. Journal of Changchun Normal University42, 96–98, 139. (in Chinese)

Liu Z, Liu J, Yu Z, Yao Q, Li Y, Liang A, Zhang W, Mi G, Jin J, Liu X, Wang G. 2020. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil and Tillage Research197, 104503.

Long H, Chen Y, Pei Y, Li H, Sun Y, Feng T. 2022. Occurrence and identification of root-knot nematodes on red dragon fruit (Hylocereus polyrhizus) in Hainan, China. Agronomy12, 1064.

Lu Q, Liu T, Wang N, Dou Z, Wang K, Zuo Y. 2020a. A review of soil nematodes as biological indicators for the assessment of soil health. Frontiers of Agricultural Science and Engineering7, 275–281.

Lu Q, Liu T, Wang N, Dou Z, Wang K, Zuo Y. 2020b. Nematicidal effect of methyl palmitate and methyl stearate against Meloidogyne incognita in bananas. Journal of Agricultural and Food Chemistry68, 6502–6510.

Lu Q, Wang K, Dou Z, Wang T, Zuo Y. 2023. Agro-industrial waste and a nematicidal substance therein (triethyl phosphate) are effective against Meloidogyne incognita of bananas. Industrial Crops and Products202, 117003.

Luo J, Zhang X, Kou X, Xie H, Bao X, Mahamood M, Liang W. 2021. Effects of residue mulching amounts on metabolic footprints based on production and respiration of soil nematodes in a long-term no-tillage system. Land Degradation & Development32, 2383–2392.

Ma Z, Guan Z, Liu Q, Hu Y, Liu L, Wang B, Huang L, Li H, Yang Y, Han M, Gao Z, Saleem M. 2023. Obstacles in continuous cropping: Mechanisms and control measures. Advances in Agronomy179, 205–256.

Massoud M A, Saad A F S A, Khalil M S, Zakaria M, Selim S. 2023. Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: In vivo and in vitroScientific Reports13, 12418.

Nascimento D D, Lopes A P M, Ferreira R J, Carvalho V R, Bombonato L T, Diniz D B, Silva J A A, Wilcker S R S, Soares P L M. 2020. First report of Meloidogyne javanica infecting hylocereus megalanthus in Brazil. Plant Disease104, 2526.

Neher D A, Weicht T R, Moorhead D L, Sinsabaugh R L. 2004. Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology18, 584–591.

Peng Z, Guan J, Mou D, Zou X, Wang B, Jin J, Zhang X, Luo H. 2022. Analysis of bacterial community composition and ecological function during soft rot process in pitaya (Hylocereus spp.) stems. Journal of Chemistry2022, 9169433.

Penn C J, Camberato J J. 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agriculture9, 120.

Phani V, Khan M R, Dutta T K. 2021. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Protection144, 105573.

Pielou E C. 1966. Shannon’s formula as a measure of specific diversity: Its use and misuse. The American Naturalist100, 463–465.

Rutter W B, Franco J, Gleason C. 2022. Rooting out the mechanisms of root-knot nematode–plant interactions. Annual Review of Phytopathology60, 43–76.

Sapir A. 2021. Why are nematodes so successful extremophiles? Communicative & Integrative Biology14, 24–26.

Schratzberger M, Holterman M, van Oevelen D, Helder J. 2019. A worm’s world: Ecological flexibility pays off for free-living nematodes in sediments and soils. Bioscience69, 867–876.

Shannon C E. 1948. A mathematical theory of communication. The Bell System Technical Journal27, 379–423.

Shilpa, Sharma P, Thakur V, Sharma A, Rana R S, Kumar P. 2022. A status-quo review on management of root knot nematode in tomato. The Journal of Horticultural Science and Biotechnology97, 403–416.

Simpson R J, Oberson A, Culvenor R A, Ryan M H, Veneklaas E J, Lambers H, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Richardson A E. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil349, 89–120.

Srivastava A K, Singh S, Marathe R A. 2002. Organic citrus: Soil fertility and plant nutrition. Journal of Sustainable Agriculture19, 5–29.

Sun K, Fu L, Song Y, Yuan L, Zhang H, Wen D, Yang N, Wang X, Yue Y, Li X, Wang K. 2021. Effects of continuous cucumber cropping on crop quality and soil fungal community. Environmental Monitoring and Assessment193, 436.

Sunagawa S, Coelho L P, Chaffron S, Kultima J R, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende D R, Alberti A, Cornejo-Castillo F M, Costea P I, Cruaud C, d’Ovidio F, Engelen S, Ferrera I, Gasol J M, Guidi L, Hildebrand F, Kokoszka F, et al. 2015. Structure and function of the global ocean microbiome. Science348, 1261359.

Taba S, Miyahira N, Nakazato M, Suzuki M, Suwa R, Sekine K T. 2022. Ecology of pitaya stem rot caused by Gilbertella persicaria and its biological control by phyllosphere bacteria. Plant Pathology71, 426–436.

Tenenhaus M, Vinzi V E, Chatelin Y M, Lauro C. 2005. PLS path modeling. Computational Statistics & Data Analysis48, 159–205.

Tian X, Li H, He Y, Hong Q, Hu W, Li Q. 2015. Research progress of pitaya. North Horticulture18, 188–193. (in Chinese)

Tian X, Zhao X, Mao Z, Xie B. 2020. Variation and dynamics of soil nematode communities in greenhouses with different continuous cropping periods. Horticultural Plant Journal6, 301–312.

Troelstra S R, Wagenaar R, Smant W, Peters B A M. 2001. Interpretation of bioassays in the study of interactions between soil organisms and plants: Involvement of nutrient factors. New Phytologist150, 697–706.

Vazquez C, de Goede R G M, Korthals G W, Rutgers M, Schouten A J, Creamer R. 2019. The effects of increasing land use intensity on soil nematodes: A turn towards specialism. Functional Ecology33, 2003–2016.

Viglierchio D R, Schmitt R V. 1983. On the methodology of nematode extraction from field samples: comparison of methods for soil extraction. Journal of Nematology15, 450–454.

Waldo B D, Shahoveisi F, Carroll M J. 2024. Long-term fertilization and cultivation impacts on nematode abundance and community structure in tall fescue turfgrass. Ecology and Evolution14, e10905.

Wang J, Kou W, Jiang C, Gao F. 2023. Characteristics and evaluation of soil nutrients in maize planting areas in the Yongqiao District of Suzhou City, Anhui Province with different tree ages. Journal of Anhui Agricultural Science51, 42–45. (in Chinese)

Wang M, Xu M, Wang Z, Ding Y, Kang S, Jiang S, Wei S, Xie J, Huang J, Li D, Hu W, Li H, Jiang X, Tang H. 2023. Whole-genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Neoscytalidium dimidiatum on pitaya. Microbiology Spectrum11, e02733-e02756.

Xing Y, Zhang P, Zhang W, Yu C, Luo Z. 2024. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Frontiers in Microbiology14, 1318586.

Yadav A, Dhakar M K, Arunachalam A, Jha S, Garg S, Gangwar N, Handa A K, Alam B, Kadam D. 2024. A review on the scope of adoption of underutilized climate smart dragon fruit (Hylocereus spp.) cultivation. Applied Fruit Science66, 297–309.

Yeates G W. 2003. Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils37, 199–210.

Yeates G W, Bongers T, De Goede R G M, Freckman D W, Georgieva S S. 1993. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology25, 315–331.

Yu Y, Chen H, Hua X, Wang Z, Li L, Li Z, Xiang M, Ding P. 2021. Long-term toxicity of lindane through oxidative stress and cell apoptosis in Caenorhabditis elegansEnvironmental Pollution272, 116036.

Zhang X, Guan P, Wang Y, Li Q, Zhang S, Zhang Z, Bezemer T M, Liang W. 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology & Biochemistry80, 118–126.

Zhang X, Li Q, Liang W, Zhang M, Bao X, Xie Z. 2013. Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere23, 98–103.

Zhang Y, Lu X, Huang J, Liu Z. 2018. First report of a stunt nematode (Tylenchorhynchus agri) from pitaya (Hylocereus polyrhizus) in Guangxi Province of China. Plant Disease102, 2662.

Zhao J, Yang Y, Zhang K, Jeong J, Zeng Z, Zang H. 2020. Does crop rotation yield more in China? A meta-analysis. Field Crops Research245, 107659.

Zhao J, Zhang W, Wang K, Song T, Du H. 2014. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects. Applied Soil Ecology75, 134–144.

Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment612, 522–537.

No related articles found!
No Suggested Reading articles found!