Bai T, Dong Z, Zheng X, Song S, Jiao J, Wang M, Song C. 2020. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Frontiers in Plant Science, 11, 574881.
Bellini C, Pacurar D I, Perrone I. 2014. Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology, 65, 639–666.
Chandler J W, Werr W. 2015. Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 20, 291–300.
Della Rovere F, Fattorini L, D’angeli S, Veloccia A, Falasca G, Altamura M. 2013. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Annals of Botany, 112, 1395–1407.
Druege U, Hilo A, Pérez-Pérez J M, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei M R. 2019. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany, 123, 929–949.
Fan S, Zhang D, Zhang L, Gao C, Xin M, Tahir M M, Li Y, Ma J, Han M. 2017. Comprehensive analysis of GASA family members in the Malus domestica genome: Identification, characterization, and their expressions in response to apple flower induction. BMC Genomics, 18, 1–19.
Fraisier V, Gojon A, Tillard P, Daniel‐Vedele F. 2000. Constitutive expression of a putative high‐affinity nitrate transporter in Nicotiana plumbaginifolia: Evidence for post‐transcriptional regulation by a reduced nitrogen source. The Plant Journal, 23, 489–496.
Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P. 2005. A turanose‐insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. The Plant Journal, 44, 633–645.
Guan L, Murphy A S, Peer W A, Gan L, Li Y, Cheng Z M. 2015. Physiological and molecular regulation of adventitious root formation. Critical Reviews in Plant Sciences, 34, 506–521.
Hu X, Xu L. 2016. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 172, 2363–2373.
Jones B, Gunnerås S A, Petersson S V, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K. 2010. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. The Plant Cell, 22, 2956–2969.
Kiba T, Kudo T, Kojima M, Sakakibara H. 2011. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 62, 1399–1409.
De Klerk G J, Brugge J T, Marinova S. 1997. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant Cell, Tissue and Organ Culture, 49, 39–44.
De Klerk G J, Hanecakova J, Jasik J. 2001. The role of cytokinins in rooting of stem slices cut from apple microcuttings. Plant Biosystems, 135, 79–84.
Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany, 65, 789–798.
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K. 2010. Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 18, 927–937.
Krouk G, Ruffel S, Gutiérrez R A, Gojon A, Crawford N M, Coruzzi G M, Lacombe B. 2011. A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 16, 178–182.
Kuroha T, Kato H, Asami T, Yoshida S, Kamada H, Satoh S. 2002. A trans‐zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. Journal of Experimental Botany, 53, 2193–2200.
Li S, Tahir M M, Wu T, Xie L, Zhang X, Mao J, Ayyoub A, Xing L, Zhang D, Shao Y. 2022. Transcriptome analysis reveals multiple genes and complex hormonal-mediated interactions with PEG during adventitious root formation in apple. International Journal of Molecular Sciences, 23, 976.
Li S W, Shi R F, Leng Y. 2015. De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS ONE, 10, e0132969.
Li Y, Li J, Yan Y, Liu W, Zhang W, Gao L, Tian Y. 2018. Knock-down of CsNRT2. 1, a cucumber nitrate transporter, reduces nitrate uptake, root length, and lateral root number at low external nitrate concentration. Frontiers in Plant Science, 9, 722.
Liu B, Wang L, Zhang J, Li J, Zheng H, Chen J, Lu M. 2014. WUSCHEL-related Homeobox genes in Populus tomentosa: Diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics, 15, 1–14.
Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 26, 1081–1093.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Luo X, Chen Z, Gao J, Gong Z. 2014. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal, 79, 44–55.
Mähönen A P, Higuchi M, Törmäkangas K, Miyawaki K, Pischke M S, Sussman M R, Helariutta Y, Kakimoto T. 2006. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Current Biology, 16, 1116–1122.
Mao J, Niu C, Li K, Fan L, Liu Z, Li S, Ma D, Tahir M M, Xing L, Zhao C. 2023. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. The Plant Cell, 35, 1202–1221.
Mao J, Zhang D, Meng Y, Li K, Wang H, Han M. 2019. Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiologia Plantarum, 166, 663–676.
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H. 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108, 18512–18517.
Mauriat M, Petterle A, Bellini C, Moritz T. 2014. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal, 78, 372–384.
Naija S, Elloumi N, Jbir N, Ammar S, Kevers C. 2008. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. Comptes Rendus Biologies, 331, 518–525.
O’Brien J A, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez R A. 2016. Nitrate transport, sensing, and responses in plants. Molecular Plant, 9, 837–856.
Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S. 2018. Acidic cell elongation drives cell differentiation in the Arabidopsis root. The EMBO Journal, 37, e99134.
Patial S, Chandel J, Sharma N, Verma P. 2021. Influence of auxin on rooting in hardwood cuttings of apple (Malus×Domestica borkh.) clonal rootstock ‘M116’ under mist chamber conditions. Indian Journal of Ecology, 48, 429–433.
Rahayu Y S, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F. 2005. Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. Journal of Experimental Botany, 56, 1143–1152.
Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde B G, Gojon A. 2006a. The Arabidopsis NRT1. 1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America, 103, 19206–19211.
Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. 2006b. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology, 140, 909–921.
Rubio V, Bustos R, Irigoyen M L, Cardona-López X, Rojas-Triana M, Paz-Ares J. 2009. Plant hormones and nutrient signaling. Plant Molecular Biology, 69, 361–373.
Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, Van Montagu M C, Benková E. 2009. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences of the United States of America, 106, 4284–4289.
Ryan E, Grierson C S, Cavell A, Steer M, Dolan L. 1998. TIP1 is required for both tip growth and non-tip growth in Arabidopsis. The New Phytologist, 138, 49–58.
Sakakibara H, Takei K, Hirose N. 2006. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 11, 440–448.
Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L. 2017. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development, 144, 3126–3133.
Smolka A, Welander M, Olsson P, Holefors A, Zhu L H. 2009. Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Science, 177, 710–715.
Sozzani R, Cui H, Moreno-Risueno M, Busch W, Van Norman J, Vernoux T, Brady S, Dewitte W, Murray J A H, Benfey P. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature, 466, 128–132.
Tahir M M, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. 2021a. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiology and Biochemistry, 165, 123–136.
Tahir M M, Li S, Liu Z, Fan L, Tang T, Zhang X, Mao J, Li K, Khan A, Shao Y. 2022a. Different miRNAs and hormones are involved in PEG-induced inhibition of adventitious root formation in apple. Scientia Horticulturae, 303, 111206.
Tahir M M, Li S, Mao J, Liu Y, Li K, Zhang X, Lu X, Ma X, Zhao C, Zhang D. 2021b. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae, 286, 110230.
Tahir M M, Lu Z, Wang C, Shah K, Li S, Zhang X, Mao J, Liu Y, Shalmani A, Li K. 2021c. Nitrate application induces adventitious root growth by regulating gene expression patterns in apple rootstocks. Journal of Plant Growth Regulation, 41, 3467–3478.
Tahir M M, Mao J, Li S, Li K, Liu Y, Shao Y, Zhang D, Zhang X. 2022b. Insights into factors controlling adventitious root formation in apples. Horticulturae, 8, 276.
Tahir M M, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J. 2022c. Insights into the complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots under nitrate treatments. Plant, Cell & Environment, 45, 3134–3156.
Tahir M M, Tong L, Xie L, Wu T, Ghani M I, Zhang X, Li S, Gao X, Tariq L, Zhang D. 2023. Identification of the HAK gene family reveals their critical response to potassium regulation during adventitious root formation in apple rootstock. Horticultural Plant Journal, 9, 45–59.
Tahir M M, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S, Zhang D. 2021d. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae, 275, 109642.
Tahir M M, Zhang X, Shah K, Hayat F, Li S, Mao J, Liu Y, Shao Y, Zhang D. 2021e. Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research, 1, 14.
Takatsuka H, Umeda M. 2014. Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany, 65, 2633–2643.
Takei K, Sakakibara H, Taniguchi M, Sugiyama T. 2001. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology, 42, 85–93.
Thomas P, Lee M, Schiefelbein J. 2003. Molecular identification of proline‐rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant, Cell & Environment, 26, 1497–1504.
Wang H, Tahir M M, Nawaz M A, Mao J, Li K, Wei Y, Ma D, Lu X, Zhao C, Zhang D. 2020. Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae, 266, 109310.
Wang J X, Yan X L, Pan R C. 2005. Relationship between adventitious root formation and plant hormones. Plant Physiology Communications, 41, 133–142.
Wang Y Y, Hsu P K, Tsay Y F. 2012. Uptake, allocation and signaling of nitrate. Trends in Plant Science, 17, 458–467.
Zaghlool S, Shehata S. 2002. Regulation of adventitious roots formation by auxin and cytokinin of derooted cucumber seedling in relation to auxin transport. In: Annals of Agricultural Science. Ain Shams University, Egypt.
Zhang X, Tahir M M, Li S, Mao J, Nawaz M A, Liu Y, Li K, Xing L, Niu J, Zhang D. 2021. Transcriptome analysis reveals the inhibitory nature of high nitrate during adventitious roots formation in the apple rootstock. Physiologia Plantarum, 173, 867–882.
Zhang X, Tahir M M, Li S, Tang T, Mao J, Li K, Shao Y, Yang W, Niu J, Zhang D. 2022. Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’ apple plants. Plant Cell, Tissue and Organ Culture (PCTOC), 148, 23–34.
|