Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 744-755    DOI: 10.1016/j.jia.2024.04.023
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus
Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang#, Jie Zhao#

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China

 Highlights 
Revealing complex genetic characteristic and high genetic variation of Puccinia striiformis f. sp. tritici in relatively isolated stripe rust in Xinjiang by a selfed population of a representative isolate.
Direct evidence showing the discovery of virulent sexual progenies originated from the avirulent parental isolate at Yr5 locus via sexual reproduction under the background of the current absence of Yr5-virulent isolates in Xinjiang.
Sexual reproduction accounts for the origin of new strains and evolution of P. striiformis f. sp. tritici in Xinjiang.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
新疆是中国相对独立的小麦条锈病流行区,新疆的条锈菌群体与其它内陆流行区的条锈菌群体存在巨大的遗传差异。新疆的小麦条锈菌小种通常进化慢于内陆群体。近年来,一些发现新小种,因此,深入了解新疆条锈菌群体毒性进化是十分必要的。本研究通过对新疆小麦条锈菌菌系BGTB-1在转主寄主堆花小檗(Berberis aggregata)进行有性生殖获得65个自交后代群体,在25个Yr单基因系进行表型鉴定,利用19个KASP-SNP引物进行基因型测定。结果表明65个自交后代产生了56个不同毒性表型(virulence patterns, VPs), 没有一个后代的毒性与亲本菌系是相同的,表现出100%的毒性变异率。与亲本菌系相比,39(60.0%)个自交后代表现毒性增强,18个(27.7%)显示毒性降低。所有的后代在Yr10, Yr15, Yr32YrTr1 四个抗病位点表现无毒性,在其余21个Yr抗病位点表现无毒性/有毒性分离。Yr5, Yr7和 Yr76(A:V≈3:1)位点的无毒性由一个显性基因控制,Yr6, Yr25Yr44 (A:V≈1:3)位点的无毒性由一个隐性基因控制。所有后代在其余的15个位点包括Yr1, Yr2, Yr3, Yr4, Yr8, Yr9, Yr17, Yr26 (=Yr24), Yr28, Yr29, Yr43, YrSp, Yr27, YrAYrExp2表现出不同的无毒性/毒性分离比,推断由现从个基因通过不同的作用方式控制其无毒性,表明亲本菌系复杂的遗传规律。分子标记检测表明所有的65个后代表现出不同的基因型,基于此构建了一个遗传距离为441.0 cM的连锁遗传图谱。有趣的是,本研究发现虽然亲本菌系对Yr5无毒性,但是后代中有17个对基因表现有毒性,表现出在该抗病位点从无毒到有毒性的致病性变化,这是首次报道对Yr5无毒的亲本菌系通过有性生殖产生对该位点有毒性的后代。本研究为深入了解新疆小麦条锈菌的遗传特征、有性生殖与毒性变异提供了科学依据,也为理解该地区条锈菌的毒性进化与阐释条锈菌新疆群体与内陆群体的遗传差异提供了理论基础。此外,需进一步研究明确自然条件下新疆有性生殖发生在新小种产生中的作用,以及对群体遗传多样性的影响。


Abstract  

In China, Xinjiang is a relatively independent epidemic region of wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, due to great population genetic divergence of Xinjiang with other inland epidemic regions.  In this region, race evolution was usually slower than inland populations.  However, many new races have recently been found, and therefore, it is necessary for more understanding of the virulence evolution of the Xinjiang population.  So, in this study, a 65 sexual progenies, derived from a Xinjiang single-urediospore isolate BGTB-1 of Pstriiformis f. sp. tritici by selfing on alternate host barberry (Berberis aggregata).  It was phenotyped on the 25 single Yr lines, and genotyped by 19 kompetitive allele-specific PCR-single nucleotide polymorphism (KASP-SNP) markers.  As a result, the 65 progenies were identified as 56 various virulence patterns (VPs), and neither of which was identical to the parental isolate, showed 100% virulence variation.  Compared with the parental isolate, of all progenies, 39 (60.0%) had increased virulence, and 18 (27.7%) had decreased virulence.  All progenies exhibited avirulence to Yr10, Yr15, Yr32, and YrTr1 loci, and avirulence and virulence segregation at the remaining 21 Yr resistance loci.  The results showed avirulence to Yr5, Yr7, and Yr76 (A:V≈3:1) loci is controlled by a single dominant gene, and that to Yr6, Yr25, and Yr44 (A:V≈1:3) loci by a single recessive gene.  However, avirulence to the remaining 15 resistant loci including Yr1, Yr2, Yr3, Yr4, Yr8, Yr9, Yr17, Yr26 (=Yr24), Yr28, Yr29, Yr43, YrSP, Yr27, YrA, and YrExp2, with various avirulence and virulence segregation ratios, is controlled by two genes with different gene effects, indicating complex genetic traits of the parental isolate.  Totally, 65 dissimilar genotypes detected among progenies using overall molecular markers, by which a linkage map was constructed, with a genetic distance of 441.0 cM.  Interestingly, although the parental isolate was avirulent to Yr5, but 17 progenies showed virulence, showing the change of pathogenicity from avirulence to virulence at this resistance locus.  It was for the first time to report that progenies with virulence to Yr5 produced sexually from avirulent parental isolate at this resistance locus.  To our knowledge, this study offers an insight into inheritance, sexual reproduction and virulence variation of Pstriiformis f. sp. tritici in Xinjiang, facilitating us to understand evolution of the rust pathogen in this region and accounting for Xinjiang population distinguished form other inland populations.  Additionally, it is necessary to further confirm the roles of sexual reproduction in the emergence of new races and affecting population genetic diversity of Pstriiformis f. sp. tritici under natural conditions in Xinjiang.  

Keywords:  wheat yellow rust       Puccinia striiformis f. sp tritici       sexual reproduction       virulence variation       new race       SNP       Yr5       Xinjiang  
Received: 06 January 2024   Accepted: 13 March 2024 Online: 13 April 2024  
Fund: This work was financially supported by Xinjiang Major Science and Technology Projects, China (2023A02009).  
About author:  Lin Wang, E-mail: 1183660283@qq.com; #Correspondence Jie Zhao, E-mail: jiezhao@nwafu.edu.cn; Zhensheng Kang, E-mail: kangzs@nwafu.edu.cn

Cite this article: 

Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. 2026. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus. Journal of Integrative Agriculture, 25(2): 744-755.

Aggarwal R, Kulshreshtha D, Sharma S, Singh V K, Manjunatha C, Bhardwaj S C, Saharan M S. 2018. Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp. tritici and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genetics and Molecular Biology41, 834–842.

Awais M, Ali S, Ju M, Liu W, Zhang G S, Zhang Z D, Li Z J, Ma X Y, Wang L, Du Z M, Tian X X, Zeng Q D, Kang Z S, Zhao J. 2022. Countrywide inter-epidemic region migration pattern suggests the role of southwestern population in wheat stripe rust epidemics in China. Environmental Microbiology24, 4684–4701.

Chen L, Awais M, Yang H, Shen Y Y, Li G K, Gao H F, Ma J B. 2023. Races CYR34 and Suwon11-1 of Puccinia striiformis f. sp. tritici played an important role in causing the stripe rust epidemic in winter wheat in Yili, Xinjiang, China. Journal of Fungi9, 436.

Chen X M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology27, 314–337.

Chen X M, Line R F. 1992. Identification of stripe rust resistance genes in wheat genotypes used to differentiate North American races of Puccinia striiformisPhytopathology82, 1428–1434.

Chen X M, Line R F, Leung H. 1993. Relationship between virulence variation and DNA polymorphism in Puccinia striiformisPhytopathology83, 1489–1497.

Doling D A, Doodson J K. 1968. The effect of yellow rust on the yield of spring and winter wheat. Transactions of the British Mycological Society51, 427–434.

Gangwar O P, Kumar S, Bhardwaj S C, Prasad P, Lata C, Adhikari S, Singh G P. 2022. Elucidating the population structure and genetic diversity of Indian Puccinia striiformis f. sp. tritici pathotypes based on microsatellite markers. Phytopathology112, 1444–1453.

IPlant. 2025. Plant Plus of China (e-version). https://www.iplant.cn/

Jin Y, Szabo L J, Carson M. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology100, 432–435.

Kosman E, Dinoor A, Herrmann A, Schachtel G A. 2008. Virulence analysis tool (VAT). User manual. [2023-9-21]. http://www.tau.ac.il/lifesci/departments/plant_s/members/kosman/VAT.html

Kuang W J, Zhang G S, Zhang Z Y, Ji H L, Shen L, Ni J Y, Wang Z H, Peng Y L. 2013. Studies on virulence of avrYr10/24/26/ch42 mutants of Puccinia striiformis f. sp. triticiSouthwest China Journal of Agricultural Science26, 2323–2331. (in Chinese)

Law C N. 1976. Genetic control of yellow rust resistance in Tspelta album. In: Plant Breeding Institute Annual Report 1975. Plant Breeding, Cambridge, UK. pp. 108–109.

Li J, Zeng J, Jiang Y Y, Li H. 2010. Occurrence and epidemics of wheat stripe rust in Xinjiang. China Plant Protection30, 16–19. (in Chinese)

Li Z Q, Zeng S M. 2002. Wheat Rusts in China. China Agriculture Press, Beijing. p. 379. (in Chinese)

Li Z Q. 1980. Primary studies on the loss of the resistance of wheat cultivars to stripe rust in China. Northwest A&F University (Natural Science Edition)3, 83–92. (in Chinese)

Line R F, Qayoum A. 1992. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968-87. US Department of Agriculture, Agricultural Research Service, Technical Bulletin, 1788.

Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. 2017. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica47, 681–687. (in Chinese)

Liu H W, Meng X C. 1957. On the loss of wheat cultivar Bima 1 to stripe rust. Shaanxi Journal of Agricultural Science6, 329–334. (in Chinese)

Ma J B, Awais M, Chen L, Yang H, Lai H L, Shen Y Y, Wang H Q, Li G K, Gao H F. 2023. Identification of Puccinia striiformis races from the spring wheat crop in Xinjiang, China. Frontiers in Plant Science14, 1273306.

Macer R C F. 1966. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: Mackey J, ed., Proceedings of the Second International Wheat Genetics Symposium, LundHereditas, 2(Suppl.), 127–142.

McIntosh R, Mu J M, Han D J, Kang Z S. 2018. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. The Crop Journal6, 321–329.

Mehmood S, Sajid M, Husnain S K, Zhao J, Huang L L, Kang Z S. 2020. Study of inheritance and linkage of virulence genes in a selfing population of a Pakistani dominant race of Puccinia striiformis f. sp. triticiInternational Journal of Molecular Science21, 1685.

Meng Y, Yang C B, Jiang S C, Huang L L, Kang Z S, Zhan G M. 2020. Development and evaluation of SNP molecular markers of wheat stripe rust based on KASP technology. Journal of Plant Protection47, 65–73. (in Chinese)

Nagarajan S. 1986. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta varalbum in India. Plant Disease70, 173.

Rapilly F. 1979. Yellow rust epidemiology. Annual Review of Phytopathology17, 59–73.

Rodriguez-Algaba J, HovmØller M S, Villegas D, Cantero-Martínez C, Jin Y, Justesen A F. 2021. Two indigenous Berberis species from Spain were confirmed as alternate hosts for the yellow rust fungus Puccinia striiformis f. sp. triticiPlant Disease105, 2281–2285.

Roelfs A P. 1978. Estimated Losses Causes by Rust in Small Grain in Cereals in United States 1918–1976. Miscellaneous Publication (United States Department of Agricultura). No. 1363. p. 85.

Singh H, Kaur J, Bala R, Srivastava P, Bains N S. 2020. Virulence and genetic diversity of Puccinia striiformis f. sp. tritici isolates in sub-mountainous area of Punjab, India. Phytoparasitica48, 383–395.

Tekin M, Cat A, Akan K, Catal M, Akar T. 2021. A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Disease105, 3292.

Tian Y, Zhan G M, Chen X M, Tungruentragoon A, Lu X, Zhao J, Huang L L, Kang Z S. 2016. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensianaPhytopathology106, 185–191.

Tian Y, Zhan G M, Lu X, Zhao J, Huang L L, Kang Z S. 2017. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. triticiFrontiers of Agricultural Science and Engineering4, 48–58.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Wan Q, Liang J M, Luo Y, Ma Z H. 2015. Population genetic structure of Puccinia striiformis in Northwestern China. Plant Disease99, 1764–1774.

Wang L, Zheng D, Zuo S X, Chen X M, Zhuang H, Huang L L, Kang Z S, Zhao J. 2018. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. triticiFrontiers in Plant Science, 9, 120.

Wellings C R, Mcintosh R A. 1990. Puccinia striiformis f. sp. tritici in Australasia: Pathogenic changes during the first 10 years. Plant Pathology39, 316–325.

Wellings C R. 2011. Global status of stripe rust: a review of historical and current threats. Euphytica179, 129–141.

Wu L R, Yang H A, Yuan W H, Song W Z, Yang J X, Li Y F, Bi Y Q. 1993. On the physiological specialization of stripe rust on wheat in China during 1985–1990. Acta Phytopathologica Sinica, 23, 269–274. (in Chinese)

Xia C J, Lei Y, Wang M N, Chen W Q, Chen X M. 2020. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere5, e00128–20.

Xiang C, Feng J Y, Wang M N, Chen X M, See D R, Wan A M, Wang T. 2016. Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee. Phytopathology106, 1186–1193.

Yuan C Y, Wang M N, Skinner D Z, See D R, Xia C J, Guo X H, Chen X M. 2018. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by sequencing. Phytopathology108, 133–141.

Zhan G M, Wang F P, Wan C P, Han Q M, Huang L L, Kang Z S, Chen X M. 2016. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Disease100, 99–107.

Zhang G S, Liu W, Wang L, Ju M, Tian X X, Du Z M, Kang Z S, Zhao J. 2023. Genetic characteristics and linkage of virulence genes of the Puccinia striiformis f. sp. tritici TSA-6 isolate to Yr5 host resistance. Plant Disease107, 688–700.

Zhang G S, Sun M D, Ma X Y, Liu W, Du Z M, Kang Z S, Zhao J. 2024. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk. Journal of Integrative Agriculture23, 2674–2685.

Zhang G S, Zhao Y Y, Kang Z S, Zhao J. 2020. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat rust resistance gene Yr5 in China. Plant Disease104, 284.

Zhang Z Z. 1962. Occurrence and control strategy of wheat stripe rust in Xinjiang. Xinjiang Agricultural Sciences3, 99–100. (in Chinese)

Zhuang H, Zhao J, Huang L L, Kang Z S, Zhao J. 2019. Identification of three Berberis species as potential alternate hosts for Puccinia striiformis f. sp. tritici in wheat-growing regions of Xinjiang, China. Journal of Integrative Agriculture18, 2786–2792.

Zhao Y Y, Huang X L, Li Q, Huang L L, Kang Z S, Zhao J. 2023. Virulence phenotyping and molecular genotyping reveal high diversity within and strong gene flow between the Puccinia striiformis f. sp. tritici populations collected from barberry and wheat in Shaanxi Province of China. Plant Disease107, 701–712.

[1] Dan Liu, Lingling Xie, Yuting Lei, Bingchuan Tian, Daolong Liao, Fangfang Wu, Baobin Mi. A new 10K liquid SNP genotyping array for wax gourd and its application in heterosis utilization and cultivars identification[J]. >Journal of Integrative Agriculture, 2026, 25(2): 734-743.
[2] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[3] Feifan Wu, Luoyang Ding, Shane K Maloney, Dominique Blache, Mengzhi Wang. Temperament and production in ruminants: The microbiome as one of the factors that affect temperament[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4111-4126.
[4] Guanghui Chen, Li Sheng, Lijun Wu, Liang Yin, Shuangling Li, Hongfeng Wang, Xiao Jiang, Heng Wang, Yanmao Shi, Fudong Zhan, Xiaoyuan Chi, Chunjuan Qu, Yan Ren, Mei Yuan. Identification of novel QTLs for resistance to late leaf spot in peanut by SNP array and QTL-seq analyses[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3772-3788.
[5] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[6] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[7] Wenting Li, Chaoqun Gao, Zhao Cai, Sensen Yan, Yanru Lei, Mengya Wei, Guirong Sun, Yadong Tian, Kejun Wang, Xiangtao Kang.

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs [J]. >Journal of Integrative Agriculture, 2024, 23(3): 975-987.

[8] Yang Yang, Hongfei Li, Changhao Liang, Donghai He, Hang Zhao, Hongbo Jiang, Jinjun Wang. Neuropeptide signaling systems are involved in regulating thermal tolerance in the oriental fruit fly[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4147-4160.
[9] YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping. Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2617-2631.
[10] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[11] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[12] LI Jia-chuang, LI Jiao-jiao, ZHAO Li, ZHAO Ji-xin, WU Jun, CHEN Xin-hong, ZHANG Li-yu, DONG Pu-hui, WANG Li-ming, ZHAO De-hui, WANG Chun-ping, PANG Yu-hui. Rapid identification of Psathyrostachys huashanica Keng chromosomes in wheat background based on ND-FISH and SNP array methods[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2934-2948.
[13] ZHANG Chuan, WU Jiu-yun, CUI Li-wen, FANG Jing-gui. Mining of candidate genes for grape berry cracking using a genome-wide association study[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2291-2304.
[14] WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
[15] PU Zhi-en, YE Xue-ling, LI Yang, SHI Bing-xin, GUO Zhu, DAI Shou-fen, MA Jian, LIU Ze-hou, JIANG Yun-feng, LI Wei, JIANG Qian-tao, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang. Identification and validation of novel loci associated with wheat quality through a genome-wide association study[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3131-3147.
No Suggested Reading articles found!