Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 756-768    DOI: 10.1016/j.jia.2024.03.075
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis

Md. Zasim Uddin1#, Md. Nadim Mahamood1, Ausrukona Ray1, Md. Ileas Pramanik1, Fady Alnajjar2#, Md Atiqur Rahman Ahad3

1 Department of Computer Science and Engineering, Begum Rokeya University, Rangpur 5404 , Bangladesh

2 Department of Computer Science and Software Engineering, United Arab Emirates University, Alain 15551, UAE

3 Department of Computer Science and Digital Technologies, University of East London, London E16 2RD, UK

 Highlights 
We introduce an end-to-end ensemble framework that fuses features from Inception V3, DenseNet-201, and a vision transformer to improve robustness and generalizability in rice disease diagnosis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Rice is one of the most important staple crops globally.  Rice plant diseases can severely reduce crop yields and, in extreme cases, lead to total production loss.  Early diagnosis enables timely intervention, mitigates disease severity, supports effective treatment strategies, and reduces reliance on excessive pesticide use.  Traditional machine learning approaches have been applied for automated rice disease diagnosis; however, these methods depend heavily on manual image preprocessing and handcrafted feature extraction, which are labor-intensive and time-consuming and often require domain expertise.  Recently, end-to-end deep learning (DL) models have been introduced for this task, but they often lack robustness and generalizability across diverse datasets.  To address these limitations, we propose a novel end-to-end training framework for convolutional neural network (CNN) and attention-based model ensembles (E2ETCA).  This framework integrates features from two state-of-the-art (SOTA) CNN models, Inception V3 and DenseNet-201, and an attention-based vision transformer (ViT) model.  The fused features are passed through an additional fully connected layer with softmax activation for final classification.  The entire process is trained end-to-end, enhancing its suitability for real-world deployment.  Furthermore, we extract and analyze the learned features using a support vector machine (SVM), a traditional machine learning classifier, to provide comparative insights.  We evaluate the proposed E2ETCA framework on three publicly available datasets, the Mendeley Rice Leaf Disease Image Samples dataset, the Kaggle Rice Diseases Image dataset, the Bangladesh Rice Research Institute dataset, and a combined version of all three.  Using standard evaluation metrics (accuracy, precision, recall, and F1-score), our framework demonstrates superior performance compared to existing SOTA methods in rice disease diagnosis, with potential applicability to other agricultural disease detection tasks.

Keywords:  rice disease diagnosis       ensemble method        CNN-based model        end-to-end model        Inception model        DenseNet model        vision transformer model        attention-based model        support vector machine  
Received: 23 October 2023   Accepted: 16 January 2024 Online: 27 March 2024  
Fund: We are grateful to the Begum Rokeya University, Rangpur, and the United Arab Emirates University, UAE for partially supporting this work.
About author:  #Correspondence Md. Zasim Uddin, E-mail: zasim@brur.ac.bd; Fady Alnajjar, E-mail: fady.alnajjar@uaeu.ac.ae

Cite this article: 

Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. 2026. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis. Journal of Integrative Agriculture, 25(2): 756-768.

Agrios G. 2005. Plant Pathology. 5th ed. Elsevier Academic Press, Burlington, Ma. USA. pp. 79–103.

Agustin M, Hermawan I, Arnaldy D, Muharram A T, Warsuta B. 2023. Design of livestream video system and classification of rice disease. JOIV: International Journal on Informatics Visualization7, 139–145.

Ahad M T, Li Y, Song B, Bhuiyan T. 2023. Comparison of cnn-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture9, 22–35.

Ahmed K, Shahid T R, Alam S M I, Momen S. 2019. Rice leaf disease detection using machine learning techniques. In: 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE. pp. 1–5.

Al-Gaashani M S, Samee N A, Alnashwan R, Khayyat M, Muthanna M S A. 2023. Using a resnet50 with a kernel attention mechanism for rice disease diagnosis. Life13, 1277.

Andrianto H, Faizal A, Armandika F. 2020. Smartphone application for deep learning-based rice plant disease detection. In: 2020 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE. pp. 387–392.

Anwar S M, Majid M, Qayyum A, Awais M, Alnowami M, Khan M K. 2018. Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems42, 1–13.

Bejani M M, Ghatee M. 2021. A systematic review on overfitting control in shallow and deep neural networks. Artificial Intelligence Review54, 6391–6438.

Bhartiya V P, Janghel R R, Rathore Y K. 2022. Rice leaf disease prediction using machine learning. In: 2022 Second International Conference on PowerControl and Computing Technologies (ICPC2T). IEEE. pp. 1–5.

Borhani Y, Khoramdel J, Najafi E. 2022. A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports 12, 11554.

Caruana R, Niculescu-Mizil A, Crew G, Ksikes A. 2004. Ensemble selection from libraries of models. In: Proceedings of the Twenty-First International Conference on Machine Learning. Association for Computing Machinery. p. 18.

David T, Alfred R, Obit J H, Fui F S, Gobilik J, Iswandono Z, Haviluddin H. 2022. Optimization of convolutional neural network in paddy disease detection. In: International Conference on Computational Science and Technology. pp. 399–412.

Deng R, Tao M, Xing H, Yang X, Liu C, Liao K, Qi L. 2021. Automatic diagnosis of rice diseases using deep learning. Frontiers in Plant Science12, 701038.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929.

Durmus H, Gu¨nes E O, Kırcı M. 2017. Disease detection on the leaves of the tomato plants by using deep learning. In: 2017 6th International Conference on Agro-Geoinformatics. IEEE. pp. 1–5.

Gautam V, Trivedi N K, Singh A, Mohamed H G, Noya I D, Kaur P, Goyal N. 2022. A transfer learning-based artificial intelligence model for leaf disease assessment. Sustainability14, 13610.

Ghosal S, Sarkar K. 2020. Rice leaf diseases classification using cnn with transfer learning. In: 2020 IEEE Calcutta Conference (CALCON). IEEE. pp. 230–236.

Hassan S M, Maji A K. 2022. Plant disease identification using a novel convolutional neural network. IEEE Access10, 5390–5401.

Van Ho S, Vuong H G, Nguyen B Q, Trinh Q H, Tran M T. 2022. Ensemble of deep neural networks for rice leaf disease classification. In: 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE. pp. 238–243.

Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700–4708.

Islam T, Sah M, Baral S, Choudhury R R. 2018. A faster technique on rice disease detectionusing image processing of affected area in agro-field. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICI-CCT). IEEE. pp. 62–66.

Jiang F, Lu Y, Chen Y, Cai D, L G. 2020. Image recognition of four rice leaf diseases based on deep learning and support vector machine. Computers and Electronics in Agriculture179, 105824.

Joshi A A, Jadhav B D. 2016. Monitoring and controlling rice diseases using Image processing techniques. In: 2016 International Conference on ComputingAnalytics and Security Trends (CAST). IEEE. pp. 471–476.

Kathiresan G, Anirudh M, Nagharjun M, Karthik R. 2021. Disease detection in rice leaves using transfer learning techniques. Journal of Physics: Conference Series1911, 012004.

Kishore K K, Kannan E. 2022. Detection of rice plant disease using adaboost svm classifier. Agronomy Journal114, 2213–2229.

Krizhevsky A, Sutskever I, Hinton G E. 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems25, 1097–1105.

Liao F B, Feng X Q, Li Z Q, Wang D Y, Xu C M, Chu G, Ma H Y, Yao Q, Chen S. 2023. A hybrid CNN-lstm model for diagnosing rice nutrient levels at the rice panicle initiation stage. Journal of Integrative Agriculture23, 711–723.

Lu Y, Yi S, Zeng N, Liu Y, Zhang Y. 2017. Identification of rice diseases using deep convolutional neural networks. Neurocomput ing, 267, 378–384.

Mohammed A, Kora R. 2023. A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences, 35, 757–774.

Nalini S, Krishnaraj N, Jayasankar T, Vinothkumar K, Britto A S F, Subramaniam K, Bharatiraja C. 2021. Paddy leaf disease detection using an optimized deep neural network. ComputersMaterials & Continua68, 1117–1128.

Opitz D, Maclin R, 1999. Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research11, 169–198.

Paymode A S, Malode V B. 2022. Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture6, 23–33.

Peng J, Wang Y, Jiang P, Zhang R, Chen H. 2023. Ricedranet: Precise identification of rice leaf diseases with complex back grounds using a res-attention mechanism. Applied Sciences13, 4928.

Peng S, Tang Q, Zou Y. 2009. Current status and challenges of rice production in china. Plant Production Science12, 3–8.

Phadikar S, Sil J, Das A K. 2012. Classification of rice leaf diseases based on morphological changes. International Journal of Information and Electronics Engineering2, 460–463.

Putra O V, Ningrum N T, Puspitasari N S, Wibowo A T, Rachmawaty E. 2022. Hit-lidia: A framework for rice leaf disease classification using ensemble and hierarchical transfer learning. Lontar KomputerJurnal Ilmiah Teknologi Informasi13, 196.

Rahman C R, Arko P S, Ali M E, Khan M A I, Apon S H, Nowrin F, Wasif A. 2020. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosystems Engineering194, 112–120.

Ramesh S, Vydeki D. 2020. Recognition and classification of paddy leaf diseases using optimized deep neural network with jaya algorithm. Information Processing in Agriculture7, 249–260.

Sanghvi H A, Patel R H, Agarwal A, Gupta S, Sawhney V, Pandya A S. 2023. A deep learning approach for classification of covid and pneumonia using densenet–201. International Journal of Imaging Systems and Technology33, 18–38.

Serbetci A, Akgul Y S. 2020. End-to-end training of cnn ensembles for person re-identification. Pattern Recognition104, 107319.

Sethy P K, Barpanda N K, Rath A K, Behera S K. 2020. Image processing techniques for diagnosing rice plant disease: A survey. Procedia Computer Science167, 516–530.

Sharma M, Kumar C J, Deka A. 2022a. Early diagnosis of rice plant disease using machine learning techniques. Archives of Phytopathology and Plant Protection55, 259–283.

Sharma M, Nath K, Sharma R K, Kumar C J, Chaudhary A. 2022b. Ensemble averaging of transfer learning models for identification of nutritional deficiency in rice plant. Electronics11, 148.

Sharma R, Singh A, Kavita, Jhanjhi N Z, Masud M, Jaha E S, Verma S. 2022. Plant disease diagnosis and image classification using deep learning. ComputersMaterials & Continua71, 2125–2140.

Simhadri C G, Kondaveeti H K. 2023. Automatic recognition of rice leaf diseases using transfer learning. Agronomy13, 961.

Singh S P, Pritamdas, K, Devi K J, Devi S D. 2023. Custom convolutional neural network for detection and classification of rice plant diseases. Procedia Computer Science218, 2026–2040.

Stephen A, Punitha A, Chandrasekar A. 2023. Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction. The Visual Computer40, 919–936.

Strange R N, Scott P R. 2005. Plant disease: A threat to global food security. Annual Review of Phytopathology43, 83–116.

Sudhesh K, Sowmya V, Kurian S, Sikha O. 2023. Ai based rice leaf disease identification enhanced by dynamic mode decomposition. Engineering Applications of Artificial Intelligence120, 105836.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. pp. 1–9.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. pp. 2818–2826.

Talukder M S H, Sarkar A K. 2023. Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning. Smart Agricultural Technology4, 100155.

Temniranrat P, Kiratiratanapruk K, Kitvimonrat A, Sinthupinyo W, Patarapuwadol S. 2021. A system for automatic rice disease detection from rice paddy images serviced via a chatbot. Computers and Electronics in Agriculture185, 106156.

Turkoglu M, Yanikog˘lu B, Hanbay D. 2022. Plantdiseasenet: Convolutional neural network ensemble for plant disease and pest detection. SignalImage and Video Processing16, 301–309.

Udayananda G, Shyalika C, Kumara P. 2022. Rice plant disease diagnosing using machine learning techniques: A comprehensive reviewSN Applied Sciences4, 311.

Uddin M Z, Muramatsu D, Takemura N, Ahad M A R, Yagi Y. 2019. Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion. IPSJ Transactions on Computer Vision and Applications11, 1–18.

Uddin M Z, Ngo T T, Makihara Y, Takemura N, Li X, Muramatsu D, Yagi Y. 2018. The ou-isir large population gait database with real-life carried object and its performance evaluation. IPSJ Transactions on Computer Vision and Applications10, 1–11.

Wang Y, Wang H, Peng Z. 2021. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Systems with Applications178, 114770.

Zeng N, Gong G, Zhou G, Hu C. 2023. An accurate classification of rice diseases based on icai-v4. Plants12, 2225.

Zhang J, Fukuda T, Yabuki N. 2021. Automatic object removal with obstructed fac¸ades completion using semantic segmentation and generative adversarial inpainting. IEEE Access9, 117486– 117495.

Zhang Y, Zhong L, Ding Y, Yu H, Zhai Z. 2023. Resvit-rice: A deep learning model combining residual module and transformer encoder for accurate detection of rice diseases. Agriculture13, 1264.

[1] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
No Suggested Reading articles found!