|
Agrios G. 2005. Plant Pathology. 5th ed. Elsevier Academic Press, Burlington, Ma. USA. pp. 79–103.
Agustin M, Hermawan I, Arnaldy D, Muharram A T, Warsuta B. 2023. Design of livestream video system and classification of rice disease. JOIV: International Journal on Informatics Visualization, 7, 139–145.
Ahad M T, Li Y, Song B, Bhuiyan T. 2023. Comparison of cnn-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture, 9, 22–35.
Ahmed K, Shahid T R, Alam S M I, Momen S. 2019. Rice leaf disease detection using machine learning techniques. In: 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE. pp. 1–5.
Al-Gaashani M S, Samee N A, Alnashwan R, Khayyat M, Muthanna M S A. 2023. Using a resnet50 with a kernel attention mechanism for rice disease diagnosis. Life, 13, 1277.
Andrianto H, Faizal A, Armandika F. 2020. Smartphone application for deep learning-based rice plant disease detection. In: 2020 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE. pp. 387–392.
Anwar S M, Majid M, Qayyum A, Awais M, Alnowami M, Khan M K. 2018. Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42, 1–13.
Bejani M M, Ghatee M. 2021. A systematic review on overfitting control in shallow and deep neural networks. Artificial Intelligence Review, 54, 6391–6438.
Bhartiya V P, Janghel R R, Rathore Y K. 2022. Rice leaf disease prediction using machine learning. In: 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). IEEE. pp. 1–5.
Borhani Y, Khoramdel J, Najafi E. 2022. A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports 12, 11554.
Caruana R, Niculescu-Mizil A, Crew G, Ksikes A. 2004. Ensemble selection from libraries of models. In: Proceedings of the Twenty-First International Conference on Machine Learning. Association for Computing Machinery. p. 18.
David T, Alfred R, Obit J H, Fui F S, Gobilik J, Iswandono Z, Haviluddin H. 2022. Optimization of convolutional neural network in paddy disease detection. In: International Conference on Computational Science and Technology. pp. 399–412.
Deng R, Tao M, Xing H, Yang X, Liu C, Liao K, Qi L. 2021. Automatic diagnosis of rice diseases using deep learning. Frontiers in Plant Science, 12, 701038.
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929.
Durmus H, Gu¨nes E O, Kırcı M. 2017. Disease detection on the leaves of the tomato plants by using deep learning. In: 2017 6th International Conference on Agro-Geoinformatics. IEEE. pp. 1–5.
Gautam V, Trivedi N K, Singh A, Mohamed H G, Noya I D, Kaur P, Goyal N. 2022. A transfer learning-based artificial intelligence model for leaf disease assessment. Sustainability, 14, 13610.
Ghosal S, Sarkar K. 2020. Rice leaf diseases classification using cnn with transfer learning. In: 2020 IEEE Calcutta Conference (CALCON). IEEE. pp. 230–236.
Hassan S M, Maji A K. 2022. Plant disease identification using a novel convolutional neural network. IEEE Access, 10, 5390–5401.
Van Ho S, Vuong H G, Nguyen B Q, Trinh Q H, Tran M T. 2022. Ensemble of deep neural networks for rice leaf disease classification. In: 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE. pp. 238–243.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700–4708.
Islam T, Sah M, Baral S, Choudhury R R. 2018. A faster technique on rice disease detectionusing image processing of affected area in agro-field. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICI-CCT). IEEE. pp. 62–66.
Jiang F, Lu Y, Chen Y, Cai D, L G. 2020. Image recognition of four rice leaf diseases based on deep learning and support vector machine. Computers and Electronics in Agriculture, 179, 105824.
Joshi A A, Jadhav B D. 2016. Monitoring and controlling rice diseases using Image processing techniques. In: 2016 International Conference on Computing, Analytics and Security Trends (CAST). IEEE. pp. 471–476.
Kathiresan G, Anirudh M, Nagharjun M, Karthik R. 2021. Disease detection in rice leaves using transfer learning techniques. Journal of Physics: Conference Series, 1911, 012004.
Kishore K K, Kannan E. 2022. Detection of rice plant disease using adaboost svm classifier. Agronomy Journal, 114, 2213–2229.
Krizhevsky A, Sutskever I, Hinton G E. 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
Liao F B, Feng X Q, Li Z Q, Wang D Y, Xu C M, Chu G, Ma H Y, Yao Q, Chen S. 2023. A hybrid CNN-lstm model for diagnosing rice nutrient levels at the rice panicle initiation stage. Journal of Integrative Agriculture, 23, 711–723.
Lu Y, Yi S, Zeng N, Liu Y, Zhang Y. 2017. Identification of rice diseases using deep convolutional neural networks. Neurocomput ing, 267, 378–384.
Mohammed A, Kora R. 2023. A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences, 35, 757–774.
Nalini S, Krishnaraj N, Jayasankar T, Vinothkumar K, Britto A S F, Subramaniam K, Bharatiraja C. 2021. Paddy leaf disease detection using an optimized deep neural network. Computers, Materials & Continua, 68, 1117–1128.
Opitz D, Maclin R, 1999. Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research, 11, 169–198.
Paymode A S, Malode V B. 2022. Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture, 6, 23–33.
Peng J, Wang Y, Jiang P, Zhang R, Chen H. 2023. Ricedranet: Precise identification of rice leaf diseases with complex back grounds using a res-attention mechanism. Applied Sciences, 13, 4928.
Peng S, Tang Q, Zou Y. 2009. Current status and challenges of rice production in china. Plant Production Science, 12, 3–8.
Phadikar S, Sil J, Das A K. 2012. Classification of rice leaf diseases based on morphological changes. International Journal of Information and Electronics Engineering, 2, 460–463.
Putra O V, Ningrum N T, Puspitasari N S, Wibowo A T, Rachmawaty E. 2022. Hit-lidia: A framework for rice leaf disease classification using ensemble and hierarchical transfer learning. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 13, 196.
Rahman C R, Arko P S, Ali M E, Khan M A I, Apon S H, Nowrin F, Wasif A. 2020. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosystems Engineering, 194, 112–120.
Ramesh S, Vydeki D. 2020. Recognition and classification of paddy leaf diseases using optimized deep neural network with jaya algorithm. Information Processing in Agriculture, 7, 249–260.
Sanghvi H A, Patel R H, Agarwal A, Gupta S, Sawhney V, Pandya A S. 2023. A deep learning approach for classification of covid and pneumonia using densenet–201. International Journal of Imaging Systems and Technology, 33, 18–38.
Serbetci A, Akgul Y S. 2020. End-to-end training of cnn ensembles for person re-identification. Pattern Recognition, 104, 107319.
Sethy P K, Barpanda N K, Rath A K, Behera S K. 2020. Image processing techniques for diagnosing rice plant disease: A survey. Procedia Computer Science, 167, 516–530.
Sharma M, Kumar C J, Deka A. 2022a. Early diagnosis of rice plant disease using machine learning techniques. Archives of Phytopathology and Plant Protection, 55, 259–283.
Sharma M, Nath K, Sharma R K, Kumar C J, Chaudhary A. 2022b. Ensemble averaging of transfer learning models for identification of nutritional deficiency in rice plant. Electronics, 11, 148.
Sharma R, Singh A, Kavita, Jhanjhi N Z, Masud M, Jaha E S, Verma S. 2022. Plant disease diagnosis and image classification using deep learning. Computers, Materials & Continua, 71, 2125–2140.
Simhadri C G, Kondaveeti H K. 2023. Automatic recognition of rice leaf diseases using transfer learning. Agronomy, 13, 961.
Singh S P, Pritamdas, K, Devi K J, Devi S D. 2023. Custom convolutional neural network for detection and classification of rice plant diseases. Procedia Computer Science, 218, 2026–2040.
Stephen A, Punitha A, Chandrasekar A. 2023. Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction. The Visual Computer, 40, 919–936.
Strange R N, Scott P R. 2005. Plant disease: A threat to global food security. Annual Review of Phytopathology, 43, 83–116.
Sudhesh K, Sowmya V, Kurian S, Sikha O. 2023. Ai based rice leaf disease identification enhanced by dynamic mode decomposition. Engineering Applications of Artificial Intelligence, 120, 105836.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. pp. 1–9.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. pp. 2818–2826.
Talukder M S H, Sarkar A K. 2023. Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning. Smart Agricultural Technology, 4, 100155.
Temniranrat P, Kiratiratanapruk K, Kitvimonrat A, Sinthupinyo W, Patarapuwadol S. 2021. A system for automatic rice disease detection from rice paddy images serviced via a chatbot. Computers and Electronics in Agriculture, 185, 106156.
Turkoglu M, Yanikog˘lu B, Hanbay D. 2022. Plantdiseasenet: Convolutional neural network ensemble for plant disease and pest detection. Signal, Image and Video Processing, 16, 301–309.
Udayananda G, Shyalika C, Kumara P. 2022. Rice plant disease diagnosing using machine learning techniques: A comprehensive review. SN Applied Sciences, 4, 311.
Uddin M Z, Muramatsu D, Takemura N, Ahad M A R, Yagi Y. 2019. Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion. IPSJ Transactions on Computer Vision and Applications, 11, 1–18.
Uddin M Z, Ngo T T, Makihara Y, Takemura N, Li X, Muramatsu D, Yagi Y. 2018. The ou-isir large population gait database with real-life carried object and its performance evaluation. IPSJ Transactions on Computer Vision and Applications, 10, 1–11.
Wang Y, Wang H, Peng Z. 2021. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Systems with Applications, 178, 114770.
Zeng N, Gong G, Zhou G, Hu C. 2023. An accurate classification of rice diseases based on icai-v4. Plants, 12, 2225.
Zhang J, Fukuda T, Yabuki N. 2021. Automatic object removal with obstructed fac¸ades completion using semantic segmentation and generative adversarial inpainting. IEEE Access, 9, 117486– 117495.
Zhang Y, Zhong L, Ding Y, Yu H, Zhai Z. 2023. Resvit-rice: A deep learning model combining residual module and transformer encoder for accurate detection of rice diseases. Agriculture, 13, 1264.
|