Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 161-175    DOI: 10.1016/j.jia.2024.03.039
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani 

Mengli Yang1*, Jian Jiao1*, Yiqi Liu1, Ming Li1, Yan Xia1, Feifan Hou1, Chuanmi Huang1, Hengtao Zhang2, Miaomiao Wang1, Jiangli Shi1, Ran Wan1, Kunxi Zhang1, Pengbo Hao1, Tuanhui Bai1, Chunhui Song1, Jiancan Feng1, Xianbo Zheng1

1 College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China

2 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China

 Highlights 
25 defensin genes were identified from the apple genome and named MdDEF1–25.
MdDEF25 is significantly expressed in apples after inoculation with Fusarium solani.
Overexpression of MdDEF25 enhances the resistance of apple to Fusarium solani.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  苹果再植病是一种在同一块土地上反复种植苹果时发生的复杂土壤综合征,其原因包括不同的病原体,其中腐皮镰刀菌Fusarium solaniF. solani)为主要病原菌。F. solani破坏了果园土壤生态系统的结构和功能,抑制了苹果树的生长发育,严重影响了苹果的品质和产量。在本研究中,我们比较了未接种和接种的苹果苗的转录组,发现差异表达基因主要富集于对共生真菌的反应等过程中,包含多个防御素。植物防御素是一种抗菌肽,但其在F. solani 感染过程中的作用尚不清楚。我们对苹果防御素基因进行了全基因组鉴定,鉴定出25个基因具有8个半胱氨酸残基的保守基序。苹果F. solani后,与对照相比,根表面细胞损伤严重,总根长、根投影面积、根尖、根交叉和总根表面积均存在显著差异。qRT-PCR分析显示,苹果F. solani侵染后MdDEF3MdDEF25诱导表达。亚细胞定位显示MdDEF3-YFPMdDEF25-YFP融合蛋白在细胞膜上表达。过表达MdDEF25-YFP融合蛋白提高了苹果对F. solani的抗性,为苹果再植病的预防和生物防治提供了新的策略。

Abstract  
Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.  It can be caused by various pathogens, and Fusarium solani is the main pathogen.  Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees, significantly impacting the quality and yield of apples.  In this study, we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F. solani.  The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.  Plant defensins are antimicrobial peptides, but their roles during Fsolani infection remain unclear.  We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.  In wild-type apple rootstock inoculated with Fsolani, the root surface cells experienced severe damage, and showed significant differences in the total root length, total root projection area, root tips, root forks, and total root surface area compared to the control group.  qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to Fsolani infection in apples.  Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.  Overexpressing the MdDEF25-YFP fusion gene enhanced resistance against Fsolani in apple, providing a new strategy for the future prevention and biological control of apple replant disease. 


Keywords:  apple       Fusarium solani       defensing       resistance       replant disease  
Received: 14 September 2023   Accepted: 24 January 2024
Fund: 
This work was supported by a project grant from the Key Research and Development and Promotion Projects of Henan Province, China (212102110113), and the Special Fund for Henan Agriculture Research System, China (HARS-22-09-Z2).  
About author:  Mengli Yang, E-mail: yang857215426@163.com; #Correspondence Xianbo Zheng, Tel: +86-371-56552582, E-mail: xbzheng@henau.edu.cn; Jiancan Feng, E-mail: jcfeng@henau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Mengli Yang, Jian Jiao, Yiqi Liu, Ming Li, Yan Xia, Feifan Hou, Chuanmi Huang, Hengtao Zhang, Miaomiao Wang, Jiangli Shi, Ran Wan, Kunxi Zhang, Pengbo Hao, Tuanhui Bai, Chunhui Song, Jiancan Feng, Xianbo Zheng. 2025. Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani . Journal of Integrative Agriculture, 24(1): 161-175.

Al Akeel R, Al-Sheikh Y, Mateen A, Syed R, Janardhan K, Gupta V C. 2014. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi Journal of Biological Sciences21, 147–151.

Bukhteeva I, Hrunyk N I, Yusypovych Y M, Shalovylo Y I, Kovaleva V, Nesmelova I V. 2022. Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestrisStructure30, 753–762.e5.

Chassagne F, Samarakoon T, Porras G, Lyles J T, Dettweiler M, Marquez L, Salam A M, Shabih S, Farrokhi D R, Quave C L. 2021. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Frontiers in Pharmacology11, 1–29.

Chen N, Wu S H, Fu J L, Cao B H, Lei J J, Chen C M, Jin J. 2016. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor smNAC suppresses resistance to bacterial wilt. Scientific Reports, 6, 1–20.

Chen S C, Liu A R, Zou Z R. 2006. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearumRussian Journal of Plant Physiology53, 671–677.

Dowd P F, Johnson E T. 2018. Overexpression of a maize (Zea mays) defensin-like gene in maize callus enhances resistance to both insects and fungi. Agri Gene9, 16–23.

Drira M, Elleuch J, Hlima H B, Hentati F, Gardarin C, Rihouey C, Cerf D L, Michaud P, Abdelkafi S, Fendri I. 2021. Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporumBiomolecules11, 1–18.

Emamifar S, Abolmaali S, Mohsen S S, Mohammadi M, Shahmohammadi M. 2021. Molecular characterization and evaluation of the antibacterial activity of a plant defensin peptide derived from a gene of oat (Avena sativa L.). Phytochemistry ,181, 112586.

FAO (Food and Agriculture Organization). 2021. Online statistical database: Food balance. FAOSTAT (Food and Agriculture Organization of the United Nations). [2021-10-9]. https://www.fao.org/faostat/zh/#data/QCL

Fant F, Vranken W F, Borremans F A M. 1999. The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. ProteinsStructureFunction and Genetics37, 388–403.

Fernández-Cancelo P, Teixidó N, Echeverría G, Torres R, Larrigaudière C, Giné-Bordonaba J. 2021. Dissecting the influence of the orchard location and the maturity at harvest on apple quality, physiology and susceptibility to major postharvest pathogens. Scientia Horticulturae285, 110159.

Ferreira R B, Monteiro S, Freitas R, Santos C N, Chen Z, Batista L M, Duarte J, Borges A, Teixeira A R. 2007. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology8, 677–700.

Gao A G, Hakimi S M, Mittanck C A, Wu Y, Woerner B M, Stark D M, Shah D M, Liang J, Rommens C M T. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology18, 1307–1310.

Gbala I D, Macharia R W, Bargul J L, Magoma G. 2022. Membrane permeabilization and antimicrobial activity of recombinant defensin-d2 and actifensin against multidrug-resistant Pseudomonas aeruginosa and Candida albicansMolecules27, 4325.

Grunewaldt-Stöcker G, Mahnkopp F, Popp C, Maiss E, Winkelmann T. 2019. Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Scientia Horticulturae243, 583–594.

Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G. 2017. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expression and Purification136, 45–51.

Hanks J N, Snyder A K, Graham M A, Shah R K, Blaylock L A, Harrison M J, Shah D M. 2005. Defensin gene family in Medicago truncatula: Structure, expression and induction by signal molecules. Plant Molecular Biology58, 385–399.

Hannan Parker A, Wilkinson S W, Ton J. 2022. Epigenetics: A catalyst of plant immunity against pathogens. New Phytology233, 66–83.

Hyo S, Sangkyu P, Soomin P, Byung O, Kyoungwhan B, Oksoo H, Jeong K, Young S K. 2014. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One9, e97936.

Jain M, Amera G M, Muthukumaran J, Singh A K. 2022. Insights into biological role of plant defense proteins: A review. Biocatalysis and Agricultural Biotechnology40, 102293.

Jenssen H, Hamill P, Hancock R E W. 2006. Peptide antimicrobial agents. Clinical Microbiology Reviews19, 491–511.

Jha S, Chattoo B B. 2010. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Research19, 373–384.

Kaur J, Fellers J, Adholeya A, Velivelli S L S, El-Mounadi K, Nersesian N, Clemente T, Shah D. 2017. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Research26, 37–49.

Koike M, Okamoto T, Tsuda S, Imai R. 2002. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochemical and Biophysical Research Communications298, 46–53.

Li J, Hu S, Jian W, Xie C, Yang X. 2021. Plant antimicrobial peptides: Structures, functions, and applications. Botanical Studies62, 1–15.

Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z. 2011. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealisFunctional & Integrative Genomics11, 63–70.

Lin T, Li L, Gu X, Owusu A M, Li S Y, Han S, Cao G, Zhu T, Li S J. 2023. Seasonal variations in the composition and diversity of rhizosphere soil microbiome of bamboo plants as infected by soil-borne pathogen and screening of associated antagonistic strains. Industrial Crops and Products197, 116641.

Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. 2023. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63Plant Physiology57, 1–15.

Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, Cao H, Li H, Fu Y. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal17, 1804–1813.

Mendez E, Moreno A, Colilla F, Pelaez F, Limas G G, Mendez R, Soriano F, Salinas M, Haro C. 1990. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. European Journal of Biochemistry194, 533–539.

Nanjareddy K, Arthikala M K, Blanco L, Arellano E S, Lara M. 2016. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: Tools for rapid gene expression analysis. BMC Biotechnology16, 1–14.

Parisi K, Shafee T M A, Quimbar P, Weerden N L, Bleackley M R, Anderson M A. 2019. The evolution, function and mechanisms of action for plant defensins. Seminars in Cell & Developmental Biology88, 107–118.

Pelegrini P B, Franco O L. 2005. Plant γ-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. International Journal of Biochemistry & Cell Biology37, 2239–2253.

Proietti S, Caarls L, Coolen S, Van Pelt J A, Van Wees S C M, Pieterse C M J. 2018. Genome-wide association study reveals novel players in defense hormone crosstalk in ArabidopsisPlant Cell and Environment41, 2342–2356.

Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2–∆∆CT method for quantitative real-time polymerase chain reaction data analysis. BiostatisticsBioinformatics and Biomathematics3, 71–85.

Ribeiro V C, Leitão C A E. 2020. Utilisation of Toluidine blue O pH 4.0 and histochemical inferences in plant sections obtained by free-hand. Protoplasma257, 993–1008.

Sadhu S K, Jogam P, Gande K, Marapaka V, Penna S, Peddaboina V. 2023. Expression of radish defensin (RsAFP2) gene in chickpea (Cicer arietinum L.) confers resistance to Fusarium wilt disease. Molecular Biology Reports50, 11–18.

Sánchez E E, Giayetto A, Cichón L, Fernández D, Aruani M C, Curetti M. 2007. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant and Soil292, 193–203.

Sathoff A E, Samac D A. 2019. Antibacterial activity of plant defensins. Molecular Plant–Microbe Interactions32, 507–514.

Shahmiri M, Bleackley M R, Dawson C S, Weerden N L, Anderson M A, Mechler A. 2023. Membrane binding properties of plant defensins. Phytochemistry209, 113618.

Souza C E, Pinto M F S, Pelegrini P B, Lima T B, Silva O N, Pogue R, Grossi M F, Franco O L. 2011. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB Journal25, 3290–3305.

Stotz H U, Thomson J G, Wang Y. 2009. Plant defensins: Defense, development and application. Plant Signaling & Behavior4, 1010–1012.

Tam J P, Wang S, Wong K H, Tan W L. 2015. Antimicrobial peptides from plants. Pharmaceuticals8, 711–757.

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal R A, Goremykin V, et al. 2010. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics42, 833–839.

Velivelli S L S, Islam K T, Hobson E, Shah D M. 2018. Modes of action of a Bi-domain plant defensin MtDef5 against a bacterial pathogen Xanthomonas campestrisFrontiers in Microbiology9, 1–9.

Vi T, Nguyen T N L, Pham T T N, Nguyen H Q, Nguyen T H Y, Tu Q T, Le V S, Chu H M. 2019. Overexpression of the ZmDEF1 gene increases the resistance to weevil larvae in transgenic maize seeds. Molecular Biology Reports46, 2177–2185.

Wang N, Jiang S, Zhang Z, Fang H, Xu H, Wang Y, Chen X. 2018. Malus sieversii: The origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Horticulture Research5, 70.

Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Journal90, 276–292.

Wang X. 2012. Cloning and functional analysis of developmental characteristics and differentially expressed genes in the peel of Huanghua pear and its green bud transformation. Ph D thesis, Nanjing Agricultural University, China. (in Chinese)

Wani S H, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports40, 1071–1085.

Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. 2014. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany65, 261–273.

Yan K, Han G, Ren C, Zhao S, Wu X, Bian T. 2018. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Frontiers in Plant Science9, 1–10.

Ye J, Zhang L, Zhang X, Wu X, Fang R. 2021. Plant defense networks against insect-borne pathogens. Trends in Plant Science26, 272–287.

Zarinpanjeh N, Motallebi M, Zamani M R, Ziaei M. 2016. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. Journal of Applied Genetics57, 417–425.

Zehra A, Meena M, Dubey M K, Aamir M, Upadhyay R S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Revista Brasileira de Botanica40, 651–664.

Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. 2017. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnology Journal15, 39–55.

Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology98, 205–218.

[1] Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[2] Jiazhi Sun, Bingyun Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Yang Sun, Xing Chen, Chunyan Gu, Xue Yang, Yu Chen. Amino acid substitutions in succinate dehydrogenase complex conferring resistance to the SDHI fungicide pydiflumetofen in Cochlibolus heterostrophus causing southern corn leaf blight[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[3] Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng. Four signal chemicals can non-destructively induce enhanced resistance to Asian citrus psyllids in Citrus sinensis while maintaining balanced plant growth and development[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[4] Yusong Liu, Yiwei Jia, Yuhao Li, Jifa Han, Qianwei Liu, Xuewen Li, Zhijun Zhang, Chao Li, Fengwang Ma. The MdMYB306-MdERF114 module promotes tolerance to cadmium by regulating MdATG16 in apple[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[5] Chenyu Zhang, Hongli Li, Piao Mei, Yuanyuan Ye, Dingding Liu, Yang Gong, Haoran Liu, Mingzhe Yao, Chunlei Ma. QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2240-2250.
[6] Xinyue Zhang, Xinhua Zhang, Wenwen Sun, Meng Lv, Yefei Gu, Sarfaraz Hussain, Xiaoan Li, Maratab Ali, Fujun Li. MdERF2 regulates cuticle wax formation by directly activating MdLACS2, MdCER1 and MdCER6 of apple fruit during postharvest[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2229-2239.
[7] Mingmei Wu, Rui Dong, Yan Zhang, Haojie Liao, Tian Tian, Dandan Xu, Youjun Zhang, Zhaojiang Guo, Shaoli Wang.
Overexpression of TuABCC4 is associated with abamectin resistance in Tetranychus urticae Koch
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2299-2310.
[8] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[9] Ru Bao, Tianli Guo, Zehua Yang, Chengyu Feng, Junyao Wu, Xiaomin Fu, Liu Hu, Changhai Liu, Fengwang Ma. Overexpression of the apple m6A demethylase gene MdALKBH1A regulates resistance to heat stress and fixed-carbon starvation[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1489-1502.
[10] Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1108-1125.
[11] Kaixin Gu, Ran Wei, Yidan Sun, Xiaoxin Duan, Jing Gao, Jianxin Wang, Yiping Hou, Mingguo Zhou, Xiushi Song. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J]. >Journal of Integrative Agriculture, 2025, 24(2): 623-637.
[12] Qianwei Liu, Shuo Xu, Lu Jin, Xi Yu, Chao Yang, Xiaomin Liu, Zhijun Zhang, Yusong Liu, Chao Li, Fengwang Ma. Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3012-3024.
[13] Xianliang Huang, Dai Shi, Kai Deng, Shuzhen Jia, Ding Ding, Li Hou, Bing Chen. Adipokinetic hormone signaling regulates adult dehydration resistance in the migratory locust[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3104-3117.
[14] Wei Wang, Renfu Zhang, Haiyang Liu, Ruifeng Ding, Qiushi Huang, Ju Yao, Gemei Liang. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2332-2345.
[15] Jizhen Wei, Min Zhang, Pin Li, Zhongyuan Deng, Xinming Yin, Shiheng An, Xianchun Li.

Functional assessment of cadherin as a shared mechanism for cross/dual resistance to Cry1Ac and Cry2Ab in Helicoverpa zea [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1604-1617.

No Suggested Reading articles found!